
 Feb-08 Java Jazz Up 1

2 Java Jazz Up Feb-08

 Feb-08 Java Jazz Up 3

February 2008 Volume I Issue VIII

“Developing plan is actually laying out
a sequence of events that have to

occur for you to achieve your goal.”

Published by

RoseIndia

JavaJazzUp Team

Editor-in-Chief

Deepak Kumar

Editor-Technical

Ravi Kant

Sr. Graphics Designer

Suman Saurabh

Graphics Designer

Santosh Kumar
Amardeep Patel

Editorial

Register with JavaJazzUp

and grab your monthly issue

“Free”

Dear Readers,

We are back here with the Feb 2008 issue of Java
Jazz-up. The current edition is designed in continuation
with the previous issues focusing the sprouting
technocrats. This issue highlights the interesting Java
technologies especially for the beginners.

Though it was a hard job to simplify the complexities of
the technologies like Hibernate 3.0, EJB 3.0, struts 2,
JSF and Design Patterns. Still our team has done a
marvelous work in making it easy and simpler for the
new programmers regime. This issue reflects our
consistent attempts to avail the quality technological
updates that enforce the readers to appreciate it a lot
and be a part of its Readers Community.

Java News and Updates section provides the latest
updates of the things happening around the globe
making the readers aware of the java technological
advancement. In this section, you will know the new
features introduced in the existing tools, utilities,
application servers, IDEs, along with the Java API
updates.

The set of articles conferring technologies like Design
patterns, JSF, Hibernate 3.0, etc. are provided in such
a manner that even a novice learns and implements the
concepts in a very easy manner.

We are providing it in a PDF format so that you can
view and even download it as a whole and get its hard
copy.

Please send us your feedback about this issue and
participate in the Reader’s Forum with your problems,
issues concerned with the topics you want us to
include in our next issues.

Editor-in-Chief
Deepak Kumar
Java Jazz up

4 Java Jazz Up Feb-08

05 Java News | Sun Microsystems has concurred all suggestions complying with the idea, to
buy MySQL AB for $1B, just by providing them additional influence in the open source
community and providing access to MySQL to its larger corporations.

07 Working with Entity bean using JPA API |In the previous issue of Java Jazz Up you
have learnt how a Stateless Bean is developed in EJB 3.

16 XML Schema | XML Schema is a W3C Standard. It is an XMLbased alternative to DTDs. It
describes the structure of an XML document.

23 XML- SAX Parser using JAXP API |In the previous issue of Java Jazz Up you have
read about XML technology. In this issue, you will learn how XML technology works
with Javausing different kinds of XML parsers.

31 Hibernate Query Language | Hibernate Query Language or HQL for short is
extremely powerful query language. HQL is much like SQL and are case-insensitive, except for
the names of the Java Classes and properties.

36 Web Services - Apache Axis| Axis stands for Apache’s EXtensible Interaction
System. Axis is one of the most popular SOAP engine that is used to construct SOAP
processor like gateways, clients, servers etc.

37 Struts2 Tags| not only let the developers use converters provided already by the
implementation but also create their own converters according to the requirement of the
application. This topic explains about how to create custom converter.

54 JSF Application| Event Handling is one of the important concepts in JSF. This section provides
a simple JSF application, which explains how to implement “immediate” event handling in JSF.

59 Design Pattern|This design pattern defines one to many dependency between the objects
so that if an object changes its state then all the dependent objects are notified and updated
automatically.

63 Tips & Tricks| This example retrieves data from MySQL and sends response to the web
browser in the form of a PDF document using Servlet. This program uses iText, which is a
java library containing classes to generate documents in PDF, XML,HTML, and RTF.

69 Advertise with Us | We are the top most providers of technology stuffs to the java community.

70 Valued JavaJazzup Readers Community | We invite you to post Java-technology
oriented stuff. It would be our pleasure to give space to your posts in JavaJazzup.

Content

 Feb-08 Java Jazz Up 5

Java News and Releases
Sun Microsystems to buy MySQL AB for
$1B

Sun Microsystems has concurred all
suggestions complying with the idea, to buy
MySQL AB for $1B, just by providing them
additional influence in the open source
community and providing access to MySQL to
its larger corporations. They are looking forward
to close the deal during the third or fourth
quarter.

Hybrid Java Profiling - New Profiling
Strategies

This new approach of Java profiling merges
the advantages of sampling as well as event
profiling just to make it easy, extensible, and
more influential runtime performance just to
monitor the solutions. This helps to scale from
development to production. It also simplifies
the way to achieve the high precision accuracy
from event profiling having the low overhead
of sampling.

Shades of HotJava: LoboBrowser, a web
browser in Java

Lobo is being developed actively in order to
fulfill the aim to provide the fully support
Javascript, HTML 4 and CSS2. LoboBrowser, is
not a HotJava but a full-Java web browser that
runs JavaScript.

It generally used to produce fast, complete,
easy to extend, featured-rich and secure
browser. It also works as a interpretation
engine, through which we can also watch the
DOM of a page even after JavaScript has been
run over it.

Desiderata Releases Jaxcent (Java AJAX)
for the Internet

The recent released Jaxcent V2, Jaxcent V2,
recently released, furnishes the full Java AJAX
Programming capabilities from the server side.
It is not mandatory to work with JavaScript,
standard servlet containers, but add an include
statement to HTML content. A Java class
implements the JavaScript capabilities, while the
client-side puts into use the server-side class
just to provide the full functional
implementation.

DigitalPerson offers fingerprint
recognition for Java-based POS terminals

DigitalPerson offers a new fingerprint
recognition software for a new generation of
point-of-sale terminals, developed in java,
enabling POS terminal developers to quickly and
easily add accountability and security capabilities.
It provides improved profitability of their
customers by enabling employee time-and-
attendance and anti-theft features.

Sun releases Java SE 6 Update 4

Sun has released Java SE 6 Update 4. This
update fixes 370 bugs including several security
issues, also fixes several flaws that can result
into system crashes. It includes JAX-WS 2.1
API in the rt.jar so you no longer you need to
copy JAX-WS or JAXB API jars in JAVA_HOME/
jre/lib/endorsed.

6 Java Jazz Up Feb-08

JBoss Enterprise Application Platform 4.3
released

The JBoss team at Red Hat has announced
the release of JBoss Enterprise Application
Platform 4.3 having features of upgraded
messaging and Web services technologies.

It integrates JBoss Application Server with
hibernate ORM software and Seam application
framework for building Web 2.0 applications.
JBoss Messaging acts as the messaging
architecture and JBoss Web Services supports
JAX-WS) and Web services API.

JVM Lies: The OutOfMemory Myth

The OutOfMemory Myth," discourses about
what happens when a JVM throws an
OutOfMemoryError – most of the programmers
have noticed that, it may indicates out of
memory, but it doesn't look like this always
and throws more RAM at the JVM may help,
but that's is not the right solution.

CodeGear(TM) JBuilder(R) 2007 Is
Named Best Java IDE

InfoWorld has named CodeGear JBuilder
2007 for “Best Java Integrated Development
Environment” of the year 2007. JBuilder 2007
IDE is built on the Eclipse framework that is
used to develop Java and Web-based
applications more fast and reliable. "I found a
very smooth, very robust IDE with many
innovative features. It's safe to say that
CodeGear decided to throw everything it had
at this release -- and succeeded brilliantly," wrote
Andrew Binstock, senior contributing editor at
InfoWorld.

Java News and Releases

 Feb-08 Java Jazz Up 7

Working with Entity bean using JPA API

In the previous issue of Java Jazz Up you
have learnt how a Stateless Bean is developed
in EJB 3. Now you will learn how an Entity Bean
is developed to interact with the Database using
JPA API.

Entity:

An entity defines a table (consisting of rows
and columns) in a relational database. An entity
refers to a logical collection of data that can be
stored or retrieved from that entity. For
example, in a banking application, Customer
and BankAccount can be treated as entities.
Customer name, customer address etc can be
logically grouped together for representing a
Customer entity. Similarly account number, total
balance etc may be logically grouped under
BankAccount entity.

Mapping with EJB3/JPA Annotations:

The EJB 3.0 entity beans are used to model
and access relational database tables. It is a
completely POJO-based persistence framework
with annotations that specify how the object
should be stored in the database. The EJB 3.0
container does the mapping from the objects
to relational database tables automatically and
transparently. Their mappings are defined
through JDK 5.0 annotations (an XML descriptor
syntax for overriding is defined in the EJB3
specification).

Annotations can be split in two categories,
the logical mapping annotations which allows
programmer to describe the object model, the
class associations, etc. and the physical
mapping annotations which describes the
physical schema, tables, columns, indexes, etc.
The combination of annotations from both
categories makes a JPA-based application. Now,
the Java developer no longer needs to worry
about for the implementation of home
interfaces and the details of the database table
schema, database connection management, and
specific database access APIs.

Working with Entity bean using JPA
Introduction to Java Persistence API
(JPA)

Java Persistence API is a lightweight
framework based on POJO for object-relational
mapping. It is the standard API added in Java
EE 5 platform and used for the management of
the persistent data and object/relational
mapping. Persistence that deals with storing
and retrieving of application data can now be
programmed with Java Persistence API starting
from EJB 3.0. Every application server
compatible with Java EE 5 supports the Java
Persistent APIs.

Java language metadata annotations and/or
XML deployment descriptor is used for the
mapping between Java objects and a relational
database.

The Java Persistence API contains the following
areas:

• Java Persistence API
• O-R mapping metadata
• The query language

Here we are describing EJB3-JPA by using the
simple domain object model by an example.

Working process of an EJB application using
JPA:

While developing an enterprise application,
first design the domain object model required

8 Java Jazz Up Feb-08

to persist the data in the database. The
Database Model is called the Domain Model
that represents the persistence objects or
entities in the database. An entity may be a
person, place or a thing about which you want
to store the data in the database. A rich domain
model includes the characteristics of all the
object-oriented behavior like inheritance,
polymorphism and many more.

Lets read about the some common annotations
that are used to develop a JPA application.

Primary Key Generation:

 In EJB 3.0, a primary key is used with @Id
annotation. Depending upon the application
requirement, Id annotation can be used with
different primary key generation strategies
defined by GeneratorType enum. The
GeneratorTypes are TABLE, SEQUENCE,
IDENTITY, AUTO, and NONE.

Declaring an entity bean:

Every bound persistent POJO class is an
entity bean and is declared using the @Entity
annotation (at the class level). @Entity declares
the class as an entity bean (i.e. a persistent
POJO class), which tells the EJB3 container that
this class needs to be mapped to a relational
database table.

Defining the table:

 @Table is set at the class level; it allows you
to define the table, catalog, and schema
names for your entity bean mapping. If no
@Table is defined the default values are used,
that is the unqualified class name of the
entity.
Here is the sample code using of these
annotations:

@Entity
@Table(name=”book”)
@SequenceGenerator(name =
“book_sequence”, sequenceName =
“book_id_seq”)

public class Book implements Serializable {
Long empid;

@Id
@GeneratedValue
public Long getId()
{ return id; }
public void setId(Long id)
{ this.id = id; }
}

The @Table defines the table name. Each
instance of the entity bean represents a row
of data in the table. Each column in the table
corresponds to a data attribute in the entity
bean. The @SequenceGenerator defines a
sequence generator. A sequence is a database
feature. It returns the next Integer or Long
value each time it is called.

@Id declares the identifier property of this
entity bean. @GeneratedValue annotation
indicates that the server automatically
generates the primary key value.

Managing Entities:

The entity manager manages entities. The
entity manager is represented by
javax.persistence.EntityManager instances.
Each EntityManager instance is associated with
a persistence context.

A persistence context defines the scope under
which particular entity instances are created,
persisted, and removed. It is a set of managed
entity instances that exist in a particular data
store. The EntityManager interface defines the
methods that are used to interact with the
persistence context.

The EntityManager Interface:

 The EntityManager API creates and removes
persistent entity instances, finds entities by
the entity’s primary key, and allows queries to
be run on entities. To obtain an EntityManager
instance, inject the entity manager into the
application component:

@PersistenceContext
EntityManager em;

Working with Entity bean using JPA

 Feb-08 Java Jazz Up 9

Managing an Entity Instance’s Life Cycle:

You manage entity instances by invoking
operations on the entity by means of an
EntityManager instance. Entity instances are in
one of four states: new, managed, detached,
or removed.

New entity instances have no persistent
identity and are not yet associated with a
persistence context.

Managed entity instances have a persistent
identity and are associated with a persistence
context.

Detached entity instances have a persistent
identify and are not currently associated with a
persistence context.

Removed entity instances have a persistent
identity, are associated with a persistent
context, and are scheduled for removal from
the data store.

In this part of Enterprise Session Beans, you
will learn how to develop, deploy, and run a
simple JPA application named book using
stateless session bean. The purpose of ‘book’
is to perform the persistence operations such
as Add record and getting information to or
from the database.

The ‘book’ application consists of two enterprise
beans, first is BookBank that defines the Table
name and Primary key in the database, and
second one is BookCatalogBean that
performs the Persistence Object Relational
Mapping.

There are following steps that you have to
follow to develop a ‘book’ JEE application.

1 Create Remote business interface:
BookCatalogInterface

2 Implement the Annotated Session
Bean: BookCatalogBean

3 Create the Entity bean: BookBank
4 Create the web client: WebClient
5 Deploy book on the server.
6 Run web client on the web browser.

A UML diagram of this application using
JPA can be seen as:

Create Remote Business Interface
To implement a session bean, we first determine
the interface that it exposes. In the Book
application, this is a simple Java interface
declaring all business methods.

package entity.library;

import javax.ejb.Remote;
import java.util.Collection;
@Remote
public interface BookCatalogInterface {
 public void addBook(String title, String
author, double price);
 public Collection <BookBank>
getAllBooks();
}

II. Implement the annotated session
bean

The EJB3 container creates instances of the
session bean based on the implementation
classes. The application itself never creates
session bean instances. It simply asks the

Working with Entity bean using JPA

10 Java Jazz Up Feb-08

container for an instance of the session bean
to use, either through dependency injection or,
for external components, through a JNDI
lookup. The class is tagged with the @Stateless
annotation, which tells the container that the
bean object does not maintain any client state
information between method invocations. The
caller component gets a fresh and random
BookCatalogBean instance every time when it
makes a bean method call.

 In order to use the entity beans in the session
bean, you need a special utility class called the
EntityManager. The EntityManager acts as a
generic DAO (Data Access Object) for all entity
beans in the JAR. It translates operations on
entity beans to SQL statements to the
database. To obtain an EntityManager, the
container creates one object and injects it into
the session bean.

The addBook() and getAllBooks() methods in
the BookCatalogBean class show the
EntityManager in action. The
EntityManager.persist() method takes a new
entity bean POJO and writes it to the database.

The code for the BookCatalogBean is given
below.

package entity.library;
import java.util.Iterator;
import java.util.Collection;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.io.Serializable;
import javax.ejb.Remote;

@Remote(BookCatalogInterface.class)
@Stateless

public class BookCatalogBean implements
Serializable, BookCatalogInterface {

@PersistenceContext(unitName=”EntityBean”)
EntityManager em;
protected BookBank book;
 protected Collection <BookBank> bookList;

 public void addBook(String title, String
author, double price) {

 // Initialize the form
 if (book == null)
 book = new BookBank(title, author, price);

em.persist(book);

}
 public Collection

<BookBank>getAllBooks() {
bookList=em.createQuery(“from BookBank
b”).getResultList(); return bookList;
 }
}

Create BookBank entity bean class:

In the book catalog example, we define a
BookBank entity bean class. The bean has
three properties (title, author and price) to
model a Book product. The id property is used
to uniquely identify the Book bean instance by
the EJB3 container. The id value is automatically
generated when the bean is saved to the
database.

package entity.library;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;
import java.util.Collection;
import javax.persistence.*;
import java.io.Serializable;
@Entity
@Table(name=”bookbank”)
public class BookBank implements Serializable
{
 long id;
 String title;
 String author;
 double price;
 //protected Collection <LineItems>
lineitems;
 public BookBank() {

super();
}
public BookBank(String title, String author,

double price) {
super();
this.title = title;
this.author = author;
this.price = price;

}
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)

 // Getter and setter methods for the

Working with Entity bean using JPA

 Feb-08 Java Jazz Up 11

defined properties..
 public long getId() {
 return id;
 }
 public void setId(long id) {
 this.id = id;
 }
 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 public String getAuthor() {
 return author;
 }
 public void setAuthor(String author) {
 this.author = author;
 }
 public double getPrice() {
 return price;
 }
 public void setPrice(double price) {
 this.price = price;
 }
}

IV. Creating a Web Client

The web client is divided into two pages. First
is “form.jsp” where a request form is sent to
the client; second is “WebClient.jsp” which is
called from the “form.jsp” page.

The source code for the “form.jsp” is given
below.

<html>
 <head>
 <title>Library</title>
 </head>
 <body bgcolor=”pink”>
 <h1>Library</h1>
 <hr>
 <form action=”WebClient.jsp”
method=”POST”>

<p>Enter the Title:
 <input type=”text” name=”t1"
size=”25"></p>

 <p>Enter Author name:

<input type=”text” name=”aut” size=”25">
</p>

<p>Enter Price:
<input type=”text” name=”price” size=”25">
</p>

 <p>
<input type=”submit” value=”Submit”>
 <input type=”reset” value=”Reset”>
</p>
 </form>
 </body>
</html>

The following statements given below in
“WebClient.jsp” are used for locating the
business interface, creating an enterprise bean
instance, and invoking a business method.

InitialContext ic = new InitialContext();
BookCatalogInterface bci =
(BookCatalogInterface) ic.lookup(“book/
BookCatalogBean/remote”);

The full source code for the WebClient.jsp is
given below.

<%@ page contentType=”text/html;
charset=UTF-8" %>
<%@ page import=”entity.library.*,
javax.naming.*, java.util.*”%>
 <%!
 private BookCatalogInterface bci = null;

String s1,s2,s3;
Collection list;

 public void jspInit() {
 try {
 InitialContext ic = new
InitialContext();

bci = (BookCatalogInterface)
ic.lookup(“book/BookCatalogBean/remote”);

System.out.println(“Loaded Bank Bean”);
 } catch (Exception ex) {
 System.out.println(“Error:”+
ex.getMessage());
 }
 }
 public void jspDestroy() {
 bci = null;
 }
%>

Working with Entity bean using JPA

12 Java Jazz Up Feb-08

 <%
try {

 s1 = request.getParameter(“t1”);
s2 = request.getParameter(“aut”);
s3 = request.getParameter(“price”);

 if (s1 != null && s2 != null && s3 !=
null) {

Double price= new Double(s3);
bci.addBook(s1, s2, price.doubleValue());
System.out.println(“Record added:”);

 %>
 <p>
 Record added
 <p>
 <%
}

list=bci.getAllBooks();
for (Iterator iter = list.iterator();

iter.hasNext();){
BookBank element =

(BookBank)iter.next();
%>

 <p>Book ID: <%= element.getId()
%></p>
 <p>Title: <%= element.getTitle()
%></p>

<p>Author: <%=
element.getAuthor() %></p>
<p>Price: <%= element.getPrice() %>
</p>

<%
}
}// end of try
catch (Exception e) {

 e.printStackTrace ();
 }
 %>

The source code for the “index.jsp” is given
below that will actual call the client-design form.

<%@page language=”java” %>
<html>
<head>
<title>Ejb3 JPA Tutorial</title>
</head>
<body bgcolor=”#FFFFCC”>
<p align=”center”><font size=”6"
color=”#800000">Welcome to

Ejb3-Jboss 4.2.0 Tutorial
Click Book Catalog

Example to execute Library
</p>
</body>
</html>

V. Deploy book application on the
Application Server

Before deploying this application, make
sure for that you have the following tools on
your system.

· JDK 1.5 or Higher
· apache-ant-1.7.0
· JBoss 4.2.0

Do the following steps to deploy the
calculator application:

(i) Make a directory structure. You can Click
here to extract the readymade directory
structure according to this tutorial.

(ii) Create the essential deployment descriptor
.xml files.

build.xml

<?xml version=”1.0"?>
<project name=”Jboss Tutorials” default=”all”
basedir=”.”>
 <target name=”init”>

<!— Define —>
 <property name=”dirs.base”
value=”${basedir}”/>
 <property name=”classdir”
value=”${dirs.base}/build/classes”/>
 <property name=”src”
value=”${dirs.base}/src”/>
 <property name=”web”
value=”${dirs.base}/web”/>
 <property
name=”deploymentdescription”
value=”${dirs.base}/deploymentdescriptors”/
>
 <property name=”warFile”
value=”book.war”/>
 <property name=”earFile”
value=”book.ear”/>
 <property name=”jarFile”
value=”book.jar”/>
 <property name=”earDir”
value=”${dirs.base}/build/ear”/>

Working with Entity bean using JPA

 Feb-08 Java Jazz Up 13

<property name=”warDir”
value=”${dirs.base}/build/war”/>
 <property name=”jarDir”
value=”${dirs.base}/build/jar”/>

<!— classpath for Project —>
<path id=”library.classpath”>

<pathelement path =”libext/servlet-
api.jar”/>

<pathelement path =”libext/ejb3-
persistence.jar”/>

<pathelement path =”libext/javaee.jar”/
>

<pathelement path =”${classpath}”/>
</path>

 <!— Create Web-inf and classes
directories —>
 <mkdir dir=”${warDir}/WEB-INF”/>
 <mkdir dir=”${warDir}/WEB-INF/
classes”/>
 <!— Create Meta-inf and classes
directories —>
 <mkdir dir=”${earDir}/META-INF”/>
 <mkdir dir=”${jarDir}/META-INF”/>
 <mkdir dir=”${classdir}”/>
 </target>
 <!— Main target —>
 <target name=”all”
depends=”init,build,buildWar,buildJar,buildEar”/
>
 <!— Compile Java Files and store in /build/
src directory —>
 <target name=”build” >
 <javac srcdir=”${src}”
destdir=”${classdir}” debug=”true”
includes=”**/*.java” >

 <classpath refid=”library.classpath”/>
 </javac>

 </target>
 <!— Create the web archive File —>
 <target name=”buildWar” depends=”init”>
 <copy todir=”${warDir}/WEB-INF/
classes”>
 <fileset dir=”${classdir}”
includes=”**/*.class” />
 </copy>
 <copy todir=”${warDir}/WEB-INF”>
 <fileset
dir=”${deploymentdescription}/web/”
includes=”web.xml” />
 </copy>
 <copy todir=”${warDir}”>
 <fileset dir=”${web}” includes=”**/

.” />
 </copy>

 <!— Create war file and place in ear
directory —> <jar jarfile=”${earDir}/
${warFile}” basedir=”${warDir}” />
 </target>
 <!— Create the jar File —>
 <target name=”buildJar” depends=”init”>
 <copy todir=”${jarDir}”>
 <fileset dir=”${classdir}”
includes=”**/*.class” />
 </copy>
 <copy todir=”${jarDir}/META-INF”>
 <fileset
dir=”${deploymentdescription}/jar/”
includes=”ejb-jar.xml,weblogic-cmp-rdbms-
jar.xml,weblogic-ejb-jar.xml,persistence.xml”
/>
 </copy>
 <!— Create jar file and place in ear
directory —>
 <jar jarfile=”${earDir}/${jarFile}”
basedir=”${jarDir}” />
 </target>
<!— Create the ear File —>
 <target name=”buildEar” depends=”init”>
 <copy todir=”${earDir}/META-INF”>
 <fileset
dir=”${deploymentdescription}/ear”
includes=”application.xml, jboss-app.xml” />
 </copy>
 <!— Create ear file and place in ear
directory —>
 <jar jarfile=”../${earFile}”
basedir=”${earDir}” />
 <copy todir=”C:/jboss-4.2.0.GA/
server/default/deploy/”>
 <fileset dir=”../”
includes=”${earFile}” />
 </copy>
 </target>
</project>

Put this file in the base
(EntityBean\code)directory. Application.xml

<?xml version=”1.0" encoding=”UTF-8"?>
<application xmlns=”http://java.sun.com/
xml/ns/javaee” xmlns:xsi=”http://
www.w3.org/2001/XMLSchema-instance”

Working with Entity bean using JPA

14 Java Jazz Up Feb-08

version=”5" xsi:schemaLocation=”http://
java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/
application_5.xsd”>

<display-name>JPA Example</display-
name>

<module>
<web>

<web-uri>book.war</web-uri>
<context-root>/book</context-root>

</web>
</module>
<module>

<ejb>book.jar</ejb>
</module>

</application>

jboss-app.xml

The jboss-app.xml file defines a class loader
for this application. It makes it simpler for EJB
3.0 to find the default EntityManager.

<jboss-app>
 <loader-repository>
 book:archive=book.ear
 </loader-repository>
</jboss-app>

Put both files in the
EntityBean\code\deploymentdescriptors\ear
directory.

persistence.xml

The persistence.xml file contains one or several
persistence-unit element. Each persistence-unit
defines the persistence context name, data
source settings, and vendor specific properties.
In this example, we are using the HSQL
database that is default provided by the Jboss
AS. The hibernate property “create-drop” will
automatically create & drop a table (according
to the POJO class) each time when you deploy
and run the application on server.

<persistence>
 <persistence-unit name=”EntityBean”>
 <jta-data-source>java:/DefaultDS</jta-
data-source>
 <properties>
 <property

name=”hibernate.hbm2ddl.auto”
 value=”create-drop”/>
<property name=”hibernate.dialect”
value=”org.hibernate.dialect.HSQLDialect”/>
</properties>
 </persistence-unit>
</persistence>

Put this files in the
EntityBean\code\deploymentdescriptors\jar
directory.

web.xml

<?xml version=”1.0" encoding=”UTF-8"?>
<!DOCTYPE web-app PUBLIC “-//Sun
Microsystems, Inc.//DTD Web Application 2.3/
/EN” “http://java.sun.com/dtd/web-
app_2_3.dtd”>
<web-app >
</web-app>

Put this file in the
Stateless\code\deploymentdescriptors\web
directory.

Put all .jsp files in the Stateless\code\web
directory.

Put all .java files in the Stateless\code\src
directory.

(iii) Start command prompt, and go to the
EntityBean\code directory. Then type the
command as:

C:\ EntityBean\code>ant build.xml
The Ant tool will deploy the book.ear file to
the jboss-
4.2.0.GA\server\default\deploy directory.

VI. Running the book application
Open the web browser and type the following
URL to run the application:

http://localhost:8080/book

Working with Entity bean using JPA

 Feb-08 Java Jazz Up 15

Click at the given link as Book Catalog
Example:

Enter the Title, Author and Price for the book
to the textbox then clicks the Submit button
to get the result.

Book ID: 1
Title: EJB-JPA
Author: Nisha
Price: 300.00

Download the full source code

Working with Entity bean using JPA

16 Java Jazz Up Feb-08

Introduction to XML Schema

XML Schema is a W3C Standard. It is an
XML-based alternative to DTDs. It describes the
structure of an XML document. The XML
Schema language is also referred to as XML
Schema Definition (XSD).

In this section, you will learn how to read
and create XML Schemas, why XML Schemas
are more powerful than DTDs and how to use
them in your application. Very soon XML
Schemas will be used in most Web applications
as a replacement for DTDs. Here are some
reasons:

• XML Schemas are extensible to future
additions

• XML Schemas are richer and more
powerful than DTDs

• XML Schemas are written in XML,
supports data types and namespaces.

What is an XML Schema?

XML Schema is used to define the legal
building blocks of an XML document, just like a
DTD. An XML Schema defines user-defined
integrants like elements, sub-elements and
attributes needed in an xml document. It defines
the data types for elements and attributes along
with the occurrence order. It defines whether
an element is empty or can include text. It also
defines default and fixed values for elements
and attributes

Why Use XML Schemas?

XML Schemas are much more powerful than
DTDs.

Features of XML Schemas:

XML Schemas Support Data Types

One of the greatest strengths of XML Schemas
is its support for data types. With support for
data types:

• It is easier to describe allowable
document content

• It is easier to validate the correctness
of data

• It is easier to work with data from a
database

• It is easier to define data facets
(restrictions on data)

• It is easier to define data patterns (data
formats)

• It is easier to convert data between
different data types

XML Schemas use XML Syntax

Another great strength about XML Schemas
is that they are written in XML. Simple XML
editors are used to edit the Schema files. Even
the same XML parsers can be used to parse
the Schema files.

XML Schemas are Extensible

XML Schemas are extensible, because they
are written in XML. So a user can reuse a
Schema in other Schemas and can also refer
multiple schemas in the same document. He
can also create his own data types derived from
the standard types

Well-Formed is not enough alone

A well-formed XML document is a document
that conforms to the XML syntax rules. Even if
documents are well formed they can still contain
errors, and those errors can have serious
consequences.

Think of the following situation: you order 5
gross of laser printers, instead of 5 laser
printers. With XML Schemas, most of these
errors can be caught by your validating
software.

XML Schemas Secure Reliable Data
Communication

When sending data from a sender to a receiver,
it is essential that both parts have the same
“expectations” about the content. With XML

XML Schema

 Feb-08 Java Jazz Up 17

Schemas, the sender can describe the data in
a way that the receiver will understand. A date
like: “03-11-2004” will, in some countries, be
interpreted as 3.November and in other
countries as 11.March.However, an XML element
with a data type like this:
<datetype=”date”>2004-03-11</date>
ensures a mutual understanding of the content,
because the XML data type “date” requires the
format “YYYY-MM-DD”.

Designing XML Schema

XML documents can have a reference to a DTD
or to an XML Schema.

A Simple XML Document

Look at this simple XML document called “E-
mail.xml”:

<?xml version=”1.0"?>
<E-mail>
<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...</Body>
</E-mail>

XML Schema

The following example is a XML Schema file called
“E-mail.xsd” that defines the elements of the
XML document above (“E-mail.xml”):

<?xml version=”1.0"?>

<xs:schema xmlns:xs=”http://
www.w3.org/2001/XMLSchema”

targetNamespace=”http://
www.roseindia.net”

xmlns=”http://www.roseindia.net”
elementFormDefault=”qualified”>

<xs:element name=”E-mail”>
 <xs:complexType>
 <xs:sequence>
<xs:element name=”To” type=”xs:string”/

>

<xs:element name=”From”
type=”xs:string”/>

<xs:element name=”Subject”
type=”xs:string”/>

<xs:element name=”Body”
type=”xs:string”/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

We will discuss the building blocks of this
schema latter in this section further.

Add a reference to the above-declared XML
document

Now this XML document (E-mail.xml) has a
reference to above-declared XML Schema (E-
mail.xsd).

<?xml version=”1.0"?>

<E-mail
xmlns=”http://www.roseindia.net”
xmlns:xsi=”http://www.w3.org/2001/

XMLSchema”
xsi:schemaLocation=”http://

www.roseindia.net/Schema E-mail.xsd”>

<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...</Body>
</E-mail>

In the above xml document xmlns declares the
XML namespaces.

Save E-mail.xml and E-mail.xsd in the same
location. Open the file E-mail.xml in a web-
browser. You will see the following:

XML Schema

18 Java Jazz Up Feb-08

Let’s briefly discuss the concept of XML
Namespaces

XML Namespaces provide a mechanism to avoid
element’s name conflicts.

Name Conflicts: Since element names in XML
are not predefined, chances for frequency to
meet name conflict increases when two different
documents use the same element names.

We solve the Name Conflicts using a Prefix
with a element name: By using a prefix, we
can create two different types of elements.
Instead of using only prefixes, we add an xmlns
attribute to the conflict causing tags to give
the prefix a qualified name.

The XML Namespace (xmlns) Attribute: The
XML namespace attribute is placed in the start
tag of an element and has the following syntax:

xmlns:namespace-prefix=”namespaceURI”

Example 1(taken from E-mail.xml):

<E-mail
xmlns=”http://www.roseindia.net”
xmlns:xs i=”http://www.w3.org/2001/
XMLSchema”
xsi:schemaLocation=”http://www.roseindia.net/
Schema” E-mail.xsd”>

Example 2(taken from E-mail.xsd):

<xs:schema
xmlns:xs=”ht tp://www.w3.org/2001/
XMLSchema”
targetNamespace=”http://www.roseindia.net”
xmlns=”http://www.roseindia.net”
elementFormDefault=”qualified”>

When a namespace is defined in the start tag
of an element, all child elements with the same
prefix are associated with the same namespace.
In E-mail.xsd “xs” is the defined namespace in
the start tag. So it prefixes all the child
elements with xs eg...

<xs:element name=”E-mail”>
 <xs:complexType>
 <xs:sequence>
<xs:element name=”To” type=”xs:string”/>
<xs:element name=”From” type=”xs:string”/>
<xs:element name=”Subject” type=”xs:string”/
>
<xs:element name=”Body” type=”xs:string”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Note that the address used to identify the
namespace is not used by the parser to look
up information. The only purpose is to give the
namespace a unique name. However, very often
companies use the namespace as a pointer to
a real Web page containing information about
the namespace.
Here a Uniform Resource Identifier (URI) is a
string of characters, which identifies an Internet
Resource.

Default Namespaces: Defining a default
namespace for an element saves us from using
prefixes in all the child elements. It has the
following syntax:

xmlns=”namespaceURI”

We have not included prefixes in all the child
element tags (To, From, Subject, Body) in our
following example:

<?xml version=”1.0"?>
<E-mail
xmlns=”http://www.roseindia.net”
xmlns:xs i=”http://www.w3.org/2001/
XMLSchema-instance”
x s i : s c h e m a L o c a t i o n = ” h t t p : / /
www.roseindia.net/Schema E-mail.xsd”>

<To>Rohan</To>

XML Schema

 Feb-08 Java Jazz Up 19

<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...</Body>
</E-mail>

Building blocks of a XML-Schema
XSD - The <schema> Element

The <schema> element is the root element
of every XML Schema:

<?xml version=”1.0"?>
<xs:schema>
...
...
</xs:schema>

The <schema> element may contain some
attributes like...

<?xml version=”1.0"?>

<xs:schema xmlns:xs=”http://http://
www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.roseindia.net”
xmlns=”http://www.roseindia.net”
elementFormDefault=”qualified”>

...

...

</xs:schema>

The following code:

xmlns:xs=”ht tp://www.w3.org/2001/
XMLSchema”

indicates that the elements and data types used
in the schema come from the “http://
www.w3.org/2001/XMLSchema” namespace. It
also specifies that the elements and data types
that come from the “http://www.w3.org/2001/
XMLSchema” namespace should be prefixed with
xs:

This code segment

targetNamespace=”http://www.roseindia.net”

indicates that the elements defined by this
schema (E-mail, To, From, Subject, Body.) come

from the “http://www.roseindia.net”
namespace.

This fragment:

xmlns=”http://www.roseindia.net”

indicates that the default namespace is “http:/
/www.roseindia.net”.

This fragment:

elementFormDefault=”qualified”

indicates that any elements used by the XML
instance document which were declared in this
schema must be a namespace qualified.

Referencing a Schema in an XML Document

This XML document (E-mail.xml) has a reference
to an XML Schema (E-mail.xsd).

<?xml version=”1.0"?>

<E-mail
xmlns=”http://www.roseindia.net”
xmlns:xsi=”http://www.w3.org/2001/
XMLSchema”
x s i : s c h e m a L o c a t i o n = ” h t t p : / /
www.roseindia.net/Schema E-mail.xsd”>

<To>Rohan</To>
<From>Amit</From>
<Subject>Surprise....</Subject>
<Body>Be ready for a cruise...</Body>
</E-mail>

The following fragment:

xmlns=”http://www.roseindia.net”

Specifies the default namespace declaration.
This declaration tells the schema-validator that
all the elements used in this XML document are
declared in the “http://www.w3schools.com”
namespace.

Once you have the XML Schema Instance
namespace available:

xmlns:xsi=”http://www.w3.org/2001/

XML Schema

20 Java Jazz Up Feb-08

XMLSchema-instance”

you can use the schemaLocation attribute. This
attribute has two values. The first value is the
namespace to use. The second value is the
location of the XML schema to use for that
namespace:

xsi:schemaLocation=”http://www.roseindia.net
note.xsd”

XSD Simple Elements

XML Schemas define the elements of XML files.

 XML simple element contains only text not even
any other elements or attributes.But the text
can be of many different types. It can be among
the types included in the XML Schema definition
(boolean, string, date, etc.), or it may be a
custom type that a user is free to define. Even.
Restrictions (facets) can be added to a data
type in order to limit its content.

Defining a Simple Element

The syntax for a simple element is:

<xs:element name=”aaa” type=”bbb”/>

where aaa is the name of the element and bbb
is the data type of the element.

XML Schema has a lot of built-in data types.
The most common types are:

• xs:string
• xs:decimal
• xs:integer
• xs:Boolean
• xs:date
• xs:time

Example:

Few of XML elements:

<name>Rahul</name>
<age>15</age>
<currentdate>2007-05-15</currentdate>

The corresponding simple element
definitions:

<xs:element name=”name” type=”xs:string”/
>
<xs:element name=”age” type=”xs:integer”/
>
<xs:element name=”currentdate”
type=”xs:date”/>

Default Values for Simple Elements

Simple elements may have a specified default
value OR a fixed specified value .A default value
is automatically assigned to the element when
no other value is specified for example to set
the “orange” default value.

<xs:element name=”fruit” type=”xs:string”
default=”orange”/>

Fixed Values for Simple Elements

A fixed value is also automatically assigned to
the element, and it cannot further specify
another value.

In the following example the fixed value is
“apple”:

<xs:element name=”fruit” type=”xs:string”
fixed=”apple”/>

XSD Complex Elements:

A complex element contains other elements or
attributes.

What is a Complex Element?

It is an XML element that contains other
elements and/or attributes. They are of four
types:

• empty elements
• elements that contain only other

elements
• elements that contain only text
• elements that contain both other

elements and text

XML Schema

 Feb-08 Java Jazz Up 21

Note: Each of these elements may contain
attributes as well!

Examples of Complex Elements

A complex empty XML element, “employee”

<employee eid=”1234"/>

A complex XML element, “employee”, which
contains only other elements:

<employee>
<firstname>Amit</firstname>
<lastname>Gupta</lastname>
</employee>

A complex XML element, “employee”, which
contains only text:

<employee type=”category”>Programmer</
employee>

A complex XML element, “event”, which
contains both elements and text:

<event>
It occured on <date
lang=”norwegian”>15.05.07</date>
</event>

Defining a Complex Element:

Look at this complex XML element,
“employee”, which contains only other
elements:

<employee>
<firstname>Amit</firstname>
<lastname>Gupta</lastname>
</employee>

We can define a complex element in an XML
Schema in two different ways:

1. “employee” element can be declared directly
by naming the element, like this:

<xs:element name=”employee”>
 <xs:complexType>
 <xs:sequence>

 <xs:element name=”firstname”
type=”xs:string”/>
 <xs:element name=”lastname”
type=”xs:string”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

In the above described method only “employee”
element can use the specified complex type.
Note that the child elements, “firstname” and
“lastname”, are surrounded by the <sequence>
indicator. This means that the child elements
must appear in the same order as they are
declared.

2. “employee” element can have a type attribute
refering to the name of the complex type to
use:

<xs:element name=”employee”
type=”personinfo”/>

<xs:complexType name=”personinfo”>
 <xs:sequence>
 <xs:element name=”firstname”
type=”xs:string”/>
 <xs:element name=”lastname”
type=”xs:string”/>
 </xs:sequence>
</xs:complexType>

Using the method described above, several
elements can refer to the same complex type,
like this:

<xs:element name=”employee”
type=”personinfo”/>
<xs:element name=”employer”
type=”personinfo”/>
<xs:element name=”teammember”
type=”personinfo”/>

<xs:complexType name=”personinfo”>
 <xs:sequence>
 <xs:element name=”firstname”
type=”xs:string”/>
 <xs:element name=”lastname”
type=”xs:string”/>
 </xs:sequence>
</xs:complexType>

XML Schema

22 Java Jazz Up Feb-08

XSD Attributes
All attributes are declared as simple types.

What is an Attribute?

Simple elements do not contain attributes. If
an element has attributes, then it is of a complex
type element. But the attribute itself is always
declared as a simple type.

Defining an Attribute?

The syntax for defining an attribute is:

<xs:attribute name=”aaa” type=”bbb”/>

where aaa is the name of the attribute and
bbb specifies the data type of the attribute.

XML Schema has a lot of built-in data types.
The most common types are:

• xs:string
• xs:decimal
• xs:integer
• xs:Boolean
• xs:date
· xs:time

Example:

Here is an XML element with an attribute:

<name lang=”EN”>Rahul</name>

And here is the corresponding attribute
definition:

<xs:attribute name=”lang” type=”xs:string”/
>

Default Values for Attributes

Attributes may have a specified default value
OR a specified fixed value A default value is
automatically assigned to the attribute when
no other value is specified for example..the
default value is “EN”:

<xs:attribute name=”lang” type=”xs:string”
default=”EN”/>

Fixed Values for Attributes

A fixed value is automatically assigned to the
attribute, and it cannot further specify another
value for example. The fixed value is “EN”:

<xs:attribute name=”lang” type=”xs:string”
fixed=”EN”/>

Optional and Required Attributes

Attributes are optional by default. To specify
that the attribute is required, use the “use”
attribute:

<xs:attribute name=”lang” type=”xs:string”
use=”required”/>

Restrictions on Content

When an XML element or attribute has a data
type defined, it can put restrictions on the
element’s or attribute’s content. If an XML
element is of type “xs:age” and contains a string
like “Hello”, the element will not validate. With
XML Schemas, user can also add his own
restrictions to XML elements and attributes.
These restrictions are called facets.

XML Schema

 Feb-08 Java Jazz Up 23

XML- SAX Parser using JAXP API

In the previous issue of Java Jazz Up you have
read about XML technology. In this issue, you
will learn how XML technology works with Java
using different kinds of XML parsers. Lets
quickly focus on the overview of XML.

XML is a W3C Recommendations. It stands for
Extensible Markup Language. It is a markup
language much like HTML used to describe data.
In XML, tags are not predefined. A user defines
his own tags and XML document structure like
Document Type Definition (DTD), XML Schema
to describe the data. Hence it is self-descriptive
too. There is nothing special about XML It is
just plain text with the addition of some XML
tags enclosed in angle brackets. In a simple
text editor, the XML document is easily visible.

Below is a list of XML-related technologies:

Technology Document.cription
DTD It is used to define the
(Document Type legal elements in an XML
 Definition) document.

XSD (XML Schema) It is an XML-based
alternative to DTDs.

XHTML It is a stricter and cleaner
(Extensible HTML) version of HTML.

XSL XSL consists of three
(Extensible Style parts: XSLT - a language
Sheet Language) for transforming XML

documents, XPath - a
language for navigating in
XML documents, and
XSL-FO - a language for
formatting XML
documents.

XSLT It is used to transform
(XSL XML documents into
Transformations) other XML formats, like

XHTML.

XML DOM Defines a standard way
(XML Document for accessing and Object
Model) manipulating XML

documents.

XML- SAX Parser using JAXP API
XPath It is a language for

navigating in XML
documents.

XSL-FO It is an XML based markup
(Extensible language describing the Style
Sheet formatting of XML data for
Language output to screen, paper or
Formatting other media.
Objects)

XLink It is a language for creating
(XML Linking hyperlinks in XML documents
Language)

XPointer It allows the XLink hyperlinks
(XML Pointer to point to more specific
Language) parts in the XML document.

XForms It uses XML to define form
(XML Forms) data.

XQuery It is designed to query XML
(XML Query data.
Language)

SOAP It is an XML-based protocol
(Simple Object to let applications exchange
Access Protocol)information over HTTP.

WSDL It is an XML-based language
(Web Services for describing web services.
Description
Language)

RDF(Resource It is an XML-based language
Description for describing web resources.
Framework)

RSS (Really It is a format for syndicating
Simple news and the content of
Syndication) news-like sites.

WAP(Wireless It was designed to show
Application internet contents on wireless
Protocol) clients, like mobile phones.

SMIL It is a language for describing
(Synchronized audiovisual presentations.
Multimedia
Integration
Language)

24 Java Jazz Up Feb-08

SVG (Scalable Defines graphics in XML
Vector Graphics) format.

Introduction to XML Parser:

In computing terms, a parser is a program
that takes input in the form of sequential
instructions, tags, or some other defined
sequence of tokens, and breaks them up into
easily manageable parts.

XML parser is used to read, update, create and
manipulate an XML document. Whenever the
XML document executes, the parser recognizes
and responds to each XML structure taking
some specified action based on the structure
type.

XML parsers can be validating or nonvalidating.
Validating parser checks the contents of a
document against a set of specific rules i.e. in
what order they must appear. These rules
appear in an XML document either as an optional
XML structure called a document type definition,
or DTD, or as an XML Schema. Nonvalidating
parsers are smaller and faster, but they do not
check documents against the DTD. They only
check whether the XML document is structurally
well formed or not.

Parsing XML Documents

To manipulate an XML document, XML parser is
needed. The parser loads the document into
the computer’s memory. Once the document is
loaded, its data can be manipulated using the
appropriate parser.

We will soon discuss APIs and parsers for
accessing XML documents using serially access
mode (SAX) and random access mode (DOM).
The specifications to ensure the validity of XML
documents are DTDs and the Schemas.

DOM (Document Object Model)

The XML Document Object Model (XML DOM)
defines a standard way to access and manipulate
XML documents using any programming
language (and a parser for that language).

The DOM presents an XML document as a tree-

structure (a node tree), with the elements,
attributes, and text defined as nodes. DOM
provides access to the information stored in
your XML document as a hierarchical object
model.

The DOM converts an XML document into a
collection of objects in an object model in a
tree structure (which can be manipulated in any
way). The textual information in XML document
gets turned into a bunch of tree nodes and a
user can easily traverse through any part of
the object tree, any time. This makes easier to
modify the data, to remove it, or even to insert
a new one. This mechanism is also known as
the random access protocol.

DOM is very useful when the document is small.
DOM reads the entire XML structure and holds
the object tree in memory, so it is much more
CPU and memory intensive. The DOM is most
suited for interactive applications because the
entire object model is present in memory, where
it can be accessed and manipulated by the user.

SAX (Simple API for XML)

This API was an innovation, made on the XML-
DEV mailing list through product collaboration,
rather than being a product of the W3C.

SAX (Simple API for XML) like DOM gives access
to the information stored in XML documents
using any programming language (and a parser
for that language).

This standard API works in serial access mode
to parse XML documents. This is a very fast-
to-execute mechanism employed to read and
write XML data comparing to its competitors.
SAX tells the application, what is in the
document by notifying through a stream of
parsing events. Application then processes
those events to act on data.

SAX is also called as an event-driven protocol,
because it implements the technique to register
the handler to invoke the callback methods
whenever an event is generated. Event is
generated when the parser encounters a new
XML tag or encounters an error, or wants to
tell anything else. SAX is memory-efficient to a

XML- SAX Parser using JAXP API

 Feb-08 Java Jazz Up 25

great extend.

SAX is very useful when the document is large.
DOM reads the entire XML structure and holds
the object tree in memory, so it is much more
CPU and memory intensive. For that reason,
the SAX API are preferred for server-side
applications and data filters that do not require
any memory intensive representation of the
data.

Overview of JAXP API’s

JAXP (Java API for XML Processing) doesn’t do
any kind of processing instead it provides a
mechanism to obtain parsed XML documents
employing SAX and DOM parsers. JAXP
provides a mechanism to plug-in with various
providers (supporting standard specifications
for DOM, SAX and XSLT). JAXP also specifies
which provider to use.

Overview of the main JAXP API Packages

The libraries that define needed JAXP APIs
are:

JAXP APIs Description
javax.xml.parsers The JAXP APIs provide

a common interface for
different vendors’ to
use SAX and DOM
parsers.

org.w3c.dom Defines the Document
class (a DOM) along
with the classes for all
of the components of a
DOM.

org.xml.sax Defines the basic SAX
APIs.

javax.xml.transform Defines the XSLT APIs
that let’s to transform XML into other forms.

The SAX API is defined in org.xml.sax package
of JAXP-APIs. The “Simple API” for XML (SAX)
is the event-driven, serial-access mechanism
that does element-by-element processing. The
API for this level reads and writes XML to a
data repository or the Web.

The DOM API is defined in org.w3c.dom package
of JAXP-APIs. The DOM API is easier to use. It
provides a tree structure of objects. The DOM
API is used to manipulate the hierarchy of
application objects it encapsulates.

The XSLT APIs defined in javax.xml.transform
package of JAXP-APIs. The XSLT APIs let you
convert XML data to into other forms.

javax.xml.parsers —Description

Provides classes to process XML documents and
supports two types of plugable parsers ie. SAX
and DOM Here are the following classses defined
in javax.xml.parsers package:

Classes Description
DocumentBuilder Defines the API

to obtain
DOM Document
instances from
an XML
document.

DocumentBuilderFactory Defines a factory
API that enables
applications to
obtain a parser
that produces
DOM object trees
from XML
documents

SAXParser Defines the API
that wraps an
XMLReader
implementation
class

SAXParserFactory Defines a factory
API that enables
document.applica
-tions to
configure and
obtain a SAX
based parser to
parse XML
documents

This package contains two vendor-neutral
factory classes: SAXParserFactory (builds a
SAXParser) and DocumentBuilderFactory

XML- SAX Parser using JAXP API

26 Java Jazz Up Feb-08

(builds a DocumentBuilder).

TheDocumentBuilder further creates a DOM-
compliant document object.

The factory APIs enables to plug-in with the
XML implementation (provided by any vendor
without changing the source code). The obtained
implementation depends on the setting of the
system properties of these factory classes
javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory. The
default values (unless overridden at runtime)
point to the reference implementation.

In this section, you will learn how SAX Parser
parses and get the information from the XML
document.

The SAX Packages:
The SAX parser is defined in the following
packages:

Package` Description
org.xml.sax Defines the SAX

interfaces. The
name “org.xml” is
the package prefix
that was settled
on by the group
that defined the
SAX API.

org.xml.sax.ext Defines SAX
extensions that
are used when
doing more
sophisticated SAX
processing, for
example, to
process a
document type
definitions (DTD)
or to see the
detailed syntax for
a file.

org.xml.sax.helpers Contains helper
classes that make
it easier to use
SAX — for
example, by

defining a default
handler that has
null-methods for
all of the
interfaces, so you
only need to
override the ones
you actually want
to implement.

javax.xml.parsers Defines the
SAXParserFactory
class, which
returns the

SAXParser.Also defines exception
classes for
reporting errors.

Main classes of javax.xml.parsers package:

SAXParser Defines the API that
wraps an
XMLReader
implementation
class

SAXParserFactory Defines a factory
API that enables
applications to
configure and
obtaina SAX based
parser to parse XML
documents

Main interfaces of org.xml.sax package:

ContentHandler Receive notification
of the logical
content of a
document.

DTDHandler Receive notification
of basic DTD-
related events.

EntityResolver Basic interface for
resolving entities.

ErrorHandler Basic interface for
SAX error handlers.

XML- SAX Parser using JAXP API

 Feb-08 Java Jazz Up 27

Understanding SAX Parser

At the very first, create an instance of the
SAXParserFactory class, which generates an
instance of the parser. This parser wraps a
SAXReader object. When the parser’s parse()
method is invoked, the reader invokes one of
the several callback methods (implemented in
the application). These callback methods are
defined by the interfaces ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver.

Brief description of the key SAX APIs:

SAXParserFactory:

SAXParserFactory object creates an instance
of the parser determined by the system
property, using the class
javax.xml.parsers.SAXParserFactory.

SAXParser:

The SAXParser interface defines several kinds
of parse() methods. Generally, XML data source
and a DefaultHandler object is passed to the
parser. This parser processes the XML file and
invokes the appropriate method on the handler
object.

SAXReader:

The SAXParser wraps a SAXReader (may use

SAXParser’s getXMLReader() and configure it).
It is the SAXReader, which carries on the
conversation with the SAX event handlers you
define.

DefaultHandler:

Not shown in the diagram, a DefaultHandler
implements the ContentHandler, ErrorHandler,
DTDHandler, and EntityResolver interfaces (with
null methods). You override only the ones you’re
interested in.

ContentHandler:

Methods like startDocument, endDocument,
startElement, and endElement are invoked
when an XML tag is recognized. This interface
also defines methods characters and
processingInstruction, which are invoked when
the parser encounters the text in an XML
element or an inline processing instruction,
respectively.

ErrorHandler:

Methods error, fatalError, and warning are
invoked in response to various parsing errors.
The default error handler throws an exception
for fatal errors and ignores other errors
(including validation errors). To ensure the
correct handling, you’ll need to supply your own
error handler to the parser.

DTDHandler:

Defines methods you will rarely call. Used while
processing a DTD to recognize and act on
declarations for an unparsed entity.

EntityResolver:

The resolveEntity method is invoked when the
parser needs to identify the data referenced
by a URI. .

Lets see an example of parsing an XML
document using Java SAX Parser. In this section,
we are going to develop a simple Java program
named EmpSaxParser.java that first
determines whether a XML document is well-
formed or not then retrieves data from XML

XML- SAX Parser using JAXP API

28 Java Jazz Up Feb-08

document using JAXP APIs.

Description of the program:

In this example you need a well-formed XML
file that has some data (Emp_Id, Emp_Name
and Emp_E-mail in our case).
Here is the XML File to be parsed: Employee-
Detail.xml

<?xml version = “1.0” ?>
<Employee-Detail>
<Employee>
<Emp_Id> E-001 </Emp_Id>
<Emp_Name> Vinod </Emp_Name>
<Emp_E-mail> Vinod1@yahoo.com </
Emp_E-mail>
</Employee>
<Employee>
<Emp_Id> E-002 </Emp_Id>
<Emp_Name> Amit </Emp_Name>
<Emp_E-mail> Amit2@yahoo.com </Emp_E-
mail>
</Employee>
<Employee>
<Emp_Id> E-003 </Emp_Id>
<Emp_Name> Deepak </Emp_Name>
<Emp_E-mail> Deepak3@yahoo.com </
Emp_E-mail>
</Employee>
</Employee-Detail>

Develop a java file (EmpSaxParser.java) that
uses an xml file to parse and check its well-
formed ness. Initially the program checks that
the given file exists or not by using exists()
method. Here is a sample code of this program:

File file = new File(str);
 if (file.exists()){

 XMLReader reader =
XMLReaderFactory.createXMLReader();
 reader.parse(str);
 System.out.println(str + “ is well-
formed “);

The XMLReaderFactory helps in creating an
XML reader, which parses xml document using
the appropriate callbacks. And it determines that
the parsed xml is well-formed or not. If xml
document is will-formed, it will display a message
“Employee-Detail.xml is well-formed!” Otherwise

prints “Employee-Detail.xml isn’t well-formed!”.
If you enter a file that doesn’t exist it will show
“File not found!”.

Now, lets see the sample code to parse the
data:

 public void startElement(String uri,
String localName,
 String element_name, Attributes
attributes)throws SAXException{
 if (element_name.equals(“Emp_Id”)){
 id = true;
 }
 if
(element_name.equals(“Emp_Name”)){
 name = true;
 }
 if (element_name.equals(“Emp_E-
mail”)){
 mail = true;
 }
 }

public void characters(char[] ch, int start, int
len) throws SAXException{
 String str = new String (ch, start,
len);
 if (id){
 System.out.println(“Emp_Id:
“+str);
 id = false;
 }
 if (name){
 System.out.println(“Name: “+str);
 name = false;
 }
 if (mail){
 System.out.println(“E-mail: “+str);
 mail = false;
 }
 }
 };

parser.parse(str, dHandler);

If the given file exits and well-formed then the
instance of SAXParser class parses the file
using the parse() method. As long as the
startElement() method returns ‘true’, the
characters() method prints data .

XML- SAX Parser using JAXP API

 Feb-08 Java Jazz Up 29

Characters(char[] ch, int start, int len)
method retrieves identification of character data.
The Parser calls this method and to report every
character data encountered. If any error occurs
it throws the SAXException. This method
takes the following parameters:

ch: This is the characters of XML document.
start: This is staring position in an array.
len: This is the number of characters to read
from an array.
Here is full source code of

EmpSaxParser.java:

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.*;
public class EmpSaxParser{
 public static void main(String[] args) throws
IOException{
 BufferedReader bf = new
BufferedReader(new
InputStreamReader(System.in));
 System.out.print(“Enter XML file name:”);
 String xmlFile = bf.readLine();
 EmpSaxParser detail = new
EmpSaxParser(xmlFile);
 }
 public EmpSaxParser(String str){
 try{
 File file = new File(str);
 if (file.exists()){

 XMLReader reader =
XMLReaderFactory.createXMLReader();
 reader.parse(str);
 System.out.println(str + “ is well-
formed “);

System.out.println(“”);
 SAXParserFactory parserFact =
SAXParserFactory.newInstance();
 SAXParser parser =
parserFact.newSAXParser();
 System.out.println(“XML Data: “);
 DefaultHandler dHandler = new
DefaultHandler(){
 boolean id;
 boolean name;
 boolean mail;

 public void startElement(String uri,
String localName, String element_name,
Attributes attributes)throws SAXException{
 if (element_name.equals(“Emp_Id”)){
 id = true;
 }
 if
(element_name.equals(“Emp_Name”)){
 name = true;
 }
 if (element_name.equals(“Emp_E-
mail”)){
 mail = true;
 }
 }
 public void characters(char[] ch, int
start, int len) throws SAXException{
 String str = new String (ch, start,
len);
 if (id){
 System.out.println(“Emp_Id:
“+str);
 id = false;
 }
 if (name){
 System.out.println(“Name: “+str);
 name = false;
 }
 if (mail){
 System.out.println(“E-mail: “+str);
 mail = false;
 }
 }
 };
 parser.parse(str, dHandler);
 }
 else{
 System.out.println(“File not found!”);
 }
 }

catch (SAXException sax){
 System.out.println(str + “ isn’t well-
formed”);
 }
 catch (Exception e){
 System.out.println(“XML File hasn’t any
elements”);
 e.printStackTrace();
 }
 }
}

XML- SAX Parser using JAXP API

30 Java Jazz Up Feb-08

Output of the Program:

C:\xml>javac EmpSaxParser.ja

C:\xml>java EmpSaxParser
Enter XML file name:emp.xml
emp.xml is well-formed

XML Data:
Emp_Id: E-001
Name: Vinod
E-mail: Vinod1@yahoo.com
Emp_Id: E-002
Name: Amit
E-mail: Amit2@yahoo.com
Emp_Id: E-003
Name: Deepak
E-mail: Deepak3@yahoo.com

XML- SAX Parser using JAXP API

 Feb-08 Java Jazz Up 31

Introduction to Hibernate Query Language

Hibernate Query Language or HQL for short is
extremely powerful query language. HQL is much
like SQL and are case-insensitive, except for
the names of the Java Classes and properties.
Hibernate Query Language is used to execute
queries against database. Hibernate
automatically generates the sql query and
execute it against underlying database if HQL
is used in the application. HQL is based on the
relational object models and makes the SQL
object oriented. Hibernate Query Language uses
Classes and properties instead of tables and
columns. Hibernate Query Language is
extremely powerful and it supports
Polymorphism, Associations, Much less verbose
than SQL.

There are other options that can be used while
using Hibernate. These are Query By Criteria
(QBC) and Query BY Example (QBE) using
Criteria API and the Native SQL queries.
Features HQL:

• Full support for relational
operations: HQL allows representing
SQL queries in the form of objects.
Hibernate Query Language uses
Classes and properties instead of
tables and columns.

• Return result as Object: The HQL
queries return the query result(s) in
the form of object(s), which is easy
to use. These eliminate the need of
creating the object and populate the
data from result set.

• Polymorphic Queries: HQL fully
supports polymorphic queries.
Polymorphic queries results the query
results along with all the child objects
if any.

• Easy to Learn: Hibernate Queries are
easy to learn and it can be easily
implemented in the applications.

• Support for Advance features: HQL
contains many advance features such

as pagination, fetch join with dynamic
profiling, Inner/outer/full joins,
Cartesian products. It also supports
Projection, Aggregation (max, avg)
and grouping, Ordering, Sub queries
and SQL function calls.

• Database independent: Queries
written in HQL are database
independent (If database supports
the underlying feature).

Understanding HQL Syntax
Any Hibernate Query Language may consist of
following elements:

• Clauses
• Aggregate functions
• Subqueries

Clauses in the HQL are:

• from
• select
• where
• order by
• group by

Aggregate functions are:

• avg(...), sum(...), min(...), max(...)
• count(*)
• count(...), count(distinct ...),

count(all...)

Subqueries:

Subqueries are nothing but a query within
another query. Hibernate supports Subqueries
if the underlying database supports it.

Lets understand, how these HQL queries are
implemented in a POJO based class.

Preparing table for HQL Examples

Create insurance table and populate it with
the data. To create the insurance table and
insert the sample data, run the following sql
query:

Hibernate Query Language

32 Java Jazz Up Feb-08

/*Table structure for table ‘insurance‘ */

drop table if exists ‘insurance‘;

CREATE TABLE ‘insurance‘ (
 ‘ID‘ int(11) NOT NULL default ‘0’,
 ‘insurance_name‘ varchar(50) default NULL,
 ‘invested_amount‘ int(11) default NULL,
 ‘investement_date‘ datetime default NULL,
 PRIMARY KEY (‘ID‘)
) TYPE=MyISAM;

/*Data for the table ‘insurance‘ */

insert into ‘insurance‘ values (1,’Car
Insurance’,1000,’2005-01-05 00:00:00');
insert into ‘insurance‘ values (2,’Life
Insurance’,100,’2005-10-01 00:00:00');
insert into ‘insurance‘ values (3,’Life
Insurance’,500,’2005-10-15 00:00:00');
insert into ‘insurance‘ values (4,’Car
Insurance’,2500,’2005-01-01 00:00:00');
insert into ‘insurance‘ values (5,’Dental
Insurance’,500,’2004-01-01 00:00:00');
insert into ‘insurance‘ values (6,’Life
Insurance’,900,’2003-01-01 00:00:00');
insert into ‘insurance‘ values (7,’Travel
Insurance’,2000,’2005-02-02 00:00:00');
insert into ‘insurance‘ values (8,’Travel
Insurance’,600,’2005-03-03 00:00:00');
insert into ‘insurance‘ values (9,’Medical
Insurance’,700,’2005-04-04 00:00:00');
insert into ‘insurance‘ values (10,’Medical
Insurance’,900,’2005-03-03 00:00:00');
insert into ‘insurance‘ values (11,’Home
Insurance’,800,’2005-02-02 00:00:00');
insert into ‘insurance‘ values (12,’Home
Insurance’,750,’2004-09-09 00:00:00');
insert into ‘insurance‘ values (13,’Motorcycle
Insurance’,900,’2004-06-06 00:00:00');
insert into ‘insurance‘ values (14,’Motorcycle
Insurance’,780,’2005-03-03 00:00:00');

Create POJO class for Insurance table:

Here is the code of our java file (Insurance.java),
which will map the POJO objects to the insurance
table.

package roseindia.tutorial.hibernate;

import java.util.Date;

public class Insurance {
 private long lngInsuranceId;
 private String insuranceName;
 private int investementAmount;
 private Date investementDate;

 /**
 * @return Returns the insuranceName.
 */
 public String getInsuranceName() {
 return insuranceName;
 }
 /**
 * @param insuranceName The
insuranceName to set.
 */
 public void setInsuranceName(String
insuranceName) {
 this.insuranceName = insuranceName;
 }
 /**
 * @return Returns the
investementAmount.
 */
 public int getInvestementAmount() {
 return investementAmount;
 }
 /**
 * @param investementAmount The
investementAmount to set.
 */
 public void setInvestementAmount(int
investementAmount) {
 this.investementAmount =
investementAmount;
 }
 /**
 * @return Returns the investementDate.
 */
 public Date getInvestementDate() {
 return investementDate;
 }
 /**
 * @param investementDate The
investementDate to set.
 */
 public void setInvestementDate(Date
investementDate) {
 this.investementDate = investementDate;

Hibernate Query Language

 Feb-08 Java Jazz Up 33

 }
 /**
 * @return Returns the lngInsuranceId.
 */
 public long getLngInsuranceId() {
 return lngInsuranceId;
 }
 /**
 * @param lngInsuranceId The
lngInsuranceId to set.
 */
 public void setLngInsuranceId(long
lngInsuranceId) {
 this.lngInsuranceId = lngInsuranceId;
 }
}

Adding mappings to contact.hbm.xml file:

<class
name=”roseindia.tutorial.hibernate.Insurance”
table=”insurance”>

<id name=”lngInsuranceId” type=”long”
column=”ID” >

<generator class=”increment”/>
</id>

<property name=”insuranceName”>
<column name=”insurance_name” />

</property>
<property name=”investementAmount”>

<column name=”invested_amount” />
</property>
<property name=”investementDate”>

<column name=”investement_date” />
</property>

</class>

Now here is the simplest code of
SelectHQLExample.java that is using from
clause to get all records from the insurance
table.

package roseindia.tutorial.hibernate;

import org.hibernate.Session;
import org.hibernate.*;
import org.hibernate.cfg.*;

import java.util.*;

public class SelectHQLExample {

 public static void main(String[] args) {
 Session session = null;

 try{
 // This step will read hibernate.cfg.xml and
prepare hibernate for use
 SessionFactory sessionFactory = new
Configuration().configure().buildSessionFactory();
 session =sessionFactory.openSession();

 //Using from Clause
 String SQL_QUERY =”from Insurance
insurance”;
 Query query =
session.createQuery(SQL_QUERY);
 for(Iterator
it=query.iterate();it.hasNext();){
 Insurance
insurance=(Insurance)it.next();
 System.out.println(“ID: “ +
insurance.getLngInsuranceId());
 System.out.println(“First Name: “ +
insurance.getInsuranceName());
 }
 session.close();
 }catch(Exception e){
 System.out.println(e.getMessage());
 }finally{
 }
 }
}

To run the example select Run-> Run As ->
Java Application from the menu bar. Following
out is displayed in the Eclipse console:

log4j:WARN No appenders could be found for
logger (org.hibernate.cfg.Environment).
log4j:WARN Please initialize the log4j system
properly.
Hibernate: select insurance0_.ID as col_0_0_
from insurance insurance0_
ID: 1
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Car Insurance

Hibernate Query Language

34 Java Jazz Up Feb-08

ID: 2
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Life Insurance
ID: 3
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Life Insurance
ID: 4
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Car Insurance
ID: 5
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Dental Insurance
ID: 6
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Life Insurance
ID: 7
Hibernate: select insurance0_.ID as ID0_,

insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Travel Insurance
ID: 8
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Travel Insurance
ID: 9
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Medical Insurance
ID: 10
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Medical Insurance
ID: 11
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Home Insurance
ID: 12
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,

Hibernate Query Language

 Feb-08 Java Jazz Up 35

insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Home Insurance
ID: 13
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Motorcycle Insurance
ID: 14
Hibernate: select insurance0_.ID as ID0_,
insurance0_.insurance_name as
insurance2_2_0_,
insurance0_.invested_amount as
invested3_2_0_,
insurance0_.investement_date as
investem4_2_0_ from insurance insurance0_
where insurance0_.ID=?
First Name: Motorcycle Insurance

Here is the list of all HQL queries performed on
the insurance table that you can use according
to your requirement:

Clause
select

Query
“Select insurance.lngInsuranceId,
insurance.insuranceName,” +
“insurance.investementAmount,
insurance.investementDate from Insurance
insurance”;

Clause
where

Query
“Select insurance.lngInsuranceId,
insurance.insuranceName,” + “insurance.
investementAmount,
insurance.investementDate from Insurance
insurance “+ “ where
insurance.lngInsuranceId=’1'”;

Clause
order by

Query
“ from Insurance as insurance order by
insurance.insuranceName”;

Clause
group by

Query
“select sum(insurance.investementAmount),
insurance.insuranceName “ + “from Insurance
insurance group by
insurance.insuranceName”;

Hibernate Update Query

Insurance ins =
(Insurance)sess.get(Insurance.class, new
Long(1));
 ins.setInsuranceName(“Travel Insurance
“);
 ins.setInvestementAmount(20000);
 ins.setInvestementDate(new Date());
 sess.update(ins);
 tr.commit();

Hibernate Delete Query

String hql = “delete from Insurance insurance
where id = 2”;
 Query query = sess.createQuery(hql);
 int row = query.executeUpdate();

Example list of Aggregate functions:

Funtion Query

Avg() “select avg(investementAmount)
from Insurance insurance”

Max() select max
(investementAmount)
fromInsurance insurance”

Min() “select min(investementAmount)
from Insurance insurance”

Hibernate Query Language

36 Java Jazz Up Feb-08

Web Services - Apache Axis

Axis stands for Apache's EXtensible Interaction
System. Axis is one of the most popular SOAP
engine that is used to construct SOAP processor
like gateways, clients, servers etc. The current
version of Axis is written in java while the next
client side version of Axis is being developed in
C++. Axis supports to both Document-style
services and RPC, therefore it seems the right
right way to develop a Document-style service.
Axis includes a handy tool called WSDL2Java
that handles the incoming XML data that comes
along with the Document-style service.

Axis is not a stand alone SOAP engine but
it also contains:

• a simple stand-alone server.
• a server that plugs into servlet engines

as Tomcat.
• support to the Web Service Description

Language (WSDL) extensively.
• emitter tool to generate Java classes

with the help of WSDL.
• some programs just to have an idea
• a tool that monitors TCP/IP packets.

While taking about the Apache's SOAP
generation it is the third generation of Apache
SOAP (started at IBM as "SOAP4J"). After that
Apache developed an engine that was much
more flexible, configurable and able to handle
both SOAP as well as the upcoming XML
protocol specification from the W3C. After a
little time, it rearchitectured and Axis now have
the following key features:

• Transport framework: It provides a simple
abstraction to design transport (i.e.
senders and listeners for SOAP over
various protocols like message-oriented
middleware, FTP, SMTP, etc), and core of
the engine is entirely transport-
independent.

• Speed: Axis has greater speed as
compared to the earlier versions of Apache
SOAP. Axis achieves this speed by using
SAX (event-based) parsing.

• Stability: Axis introduces a set of
published interfaces that enable the axis
more stable than the rest of Axis as
changes occurs relatively slowly.

• Flexibility: The Axis architecture leaves the
developer completely free to insert
extensions into the engine to process the
system management, custom headers, or
anything else you can imagine.

• WSDL support: Axis supports the Web
Service Description Language, version
1.1. WSDL enables to the user to easily
build stubs to access remote services. It
also allows to the user to export machine-
readable descriptions automatically of your
deployed services from Axis.

• Component-oriented deployment: It
enables the user to define reusable
networks of Handlers that process the
common patterns for your applications,
or to distribute to partners.

Now we think that you have better
understanding about Axis. It is a better way of
configuring a SOAP engine.

 Feb-08 Java Jazz Up 37

Apache Struts is an open-source framework
used to develop Java web applications. In this
section, struts 2 form tags (UItags) will be
discussed and the rest will be included in the
subsequent issues of the magazine. Just
download the zip file “struts2UIformtags.zip”
from any link given below of each page of this
article, unzip it and copy this application to the
webapps directory of Tomcat. Start tomcat and
write http:// localhost:8080/ truts2UIformtags/
index.jsp to the address bar. You can examine
the result of each tag from this

page.

1. Auto Completer Example

The autocompleter tag always displays a
dropdown list with the options that have at
least a partial match with entered text in the
textbox. If the user clicks on the dropdown
button then all options are shown in the
dropdown list. The autocompleter tag generates
two input fields. First is “text”, whose name is
specified with the “name” attribute and another
one is “hidden” whose name is “$(name). Key”,
where ${name} is the value in the “name”

attribute

The autocompleter tag loads its options
asynchronously when the page loads suggested
options based on the text entered by you in
textbox. If the autoComplete attribute is set
to ‘true’ (By defalut ‘false’) then it makes
suggestions in the textbox.

Add the following code snippet into the
struts.xml file.

<action name=”autocompleter”
class=”net.javajazzup.autocompleter”>
 <result>/pages/formTags/
autocompleter.jsp</result>
</action>

Create a list in the action class and populate
them with various states name of U.S. as
shown in the “autocompleter” class.

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class autocompleter extends
ActionSupport{
 private List state;
 public String execute() throws Exception{
 state = new ArrayList();
 state.add(“Alabama”);
 state.add(“Alaska”);
 state.add(“Arizona”);
 state.add(“Arkansas”);
 state.add(“California”);
 state.add(“Colorado”);
 state.add(“Connecticut”);
 state.add(“Delaware”);
 state.add(“District of Columbia”);
 state.add(“Florida”);
 state.add(“Georgia”);
 state.add(“Hawaii”);
 state.add(“Idaho”);
 state.add(“Illinois”);
 state.add(“Indiana”);
 state.add(“Iowa”);
 state.add(“Kansas”);
 state.add(“Kentucky”);

Struts2 Tags

38 Java Jazz Up Feb-08

 state.add(“Louisiana”);
 state.add(“Maine”);
 state.add(“Maryland”);
 state.add(“Massachusetts”);
 state.add(“Michigan”);
 state.add(“Minnesota”);
 state.add(“Mississippi”);
 state.add(“Missouri”);
 state.add(“Montana”);
 state.add(“Nebraska”);
 state.add(“Nevada”);
 state.add(“New Hampshire”);
 state.add(“New Jersey”);
 state.add(“New Mexico”);
 state.add(“New York”);
 state.add(“North Carolina”);
 state.add(“North Dakota”);
 state.add(“Ohio”);
 state.add(“Oklahoma”);
 state.add(“Oregon”);
 state.add(“Pennsylvania”);
 state.add(“Rhode Island”);
 state.add(“South Carolina”);
 state.add(“South Dakota”);
 state.add(“Tennessee”);
 state.add(“Texas”);
 state.add(“Utah”);
 state.add(“Vermont”);
 state.add(“Virginia”);
 state.add(“Washington”);
 state.add(“West Virginia”);
 state.add(“Wisconsin”);
 state.add(“Wyoming”);
 return SUCCESS;
 }
 public List getState(){
 return state;
 }
}

<s:autocompleter theme=”simple” list=”state”
StateName/> creates a autocompleter list with
the name of U.S. states.

autocompleter.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Struts 2 Autocompleter Example</
title>

<s:head theme=”ajax” />
</head>
<body>

<h2>Autocompleter Example</h2>
<s:label name=”stateName” value=”Select

State Name:” />
<s:autocompleter theme=”simple”

list=”state” name=”StateName”/>
</body>

</html>

Output of the autocompleter.jsp:

2. Checkbox Tag (Form Tag) Example

The checkbox tag is a UI tag that is used to
render an HTML input element of type checkbox,
populated by the specified property from the
ValueStack.

Add the following code snippet into the
struts.xml file.

<action name=”checkboxTag”>
 <result>/pages/formTags/
checkboxTag.jsp</result>
</action>

Create a jsp using the tag <s:checkbox> It
Renders an HTML input element of type
checkbox.

Struts2 Tags

 Feb-08 Java Jazz Up 39

checkboxTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Checkbox (Form Tag) Tag
Example</title>

</head>
<body>

<h2>Checkbox Tag Example</h2>
Sex

<s:checkbox label=”Male” name=”male”

value=”true” />

<s:checkbox label=”Female”

name=”male” />
</body>

</html>

Output of the checkboxTag.jsp:

3. Checkboxlist Tag (Form Tag) Example

The checkboxlist tag is a UI tag that creates a
series of checkboxes from a list. Setup is like
<s:select /> or <s:radio />, but creates
checkbox tags.

Add the following code snippet into the
struts.xml file.

<action name=”checkboxlistTag”
class=”net.javajazzup.checkboxlistTag”>

<result>/pages/formTags/
checkboxlistTag.jsp</result>
</action>

Create two lists in the action class and populate
them with various items as shown in the
“checkboxlistTag” class.

checkboxlistTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class checkboxlistTag extends
ActionSupport{

 private List fruits;
 private List animals;
 public String execute()throws Exception{
 fruits = new ArrayList();
 fruits.add(“Apple”);
 fruits.add(“Mango”);
 fruits.add(“Orange”);
 fruits.add(“Pine Apple”);

 animals = new ArrayList();
 animals.add(“Dog”);
 animals.add(“Elephant”);
 animals.add(“Ox”);
 animals.add(“Fox”);
 return SUCCESS;

 }

 public List getFruits(){
 return fruits;
 }

 public List getAnimals(){
 return animals;
 }
}

Create a jsp using the tag <s:checkboxlist>

<s:checkboxlist name=”Fruits-name”
list=”fruits” /> prints a checboxlist with name
Fruits and Creates a series of checkboxes from
fruits list of the action class “checkboxlistTag”.
<s:checkboxlist name=”Animals-name”
list=”animals” /> prints a checboxlist with name

Struts2 Tags

40 Java Jazz Up Feb-08

Animals and Creates a series of checkboxes
from animals list of the action class
“checkboxlistTag”.

checkboxlistTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
 <head>
 <title>Checkboxlist (Form Tag) Tag
Example!</title>
 </head>
 <body>
 <h2>Checkboxlist Tag Example</h2>
 Fruits

 <s:checkboxlist name=”Fruits-name”
list=”fruits” />

 Animals

 <s:checkboxlist name=”Animals-name”
list=”animals” />

 </body>
</html>

Output of the checkboxlistTag.jsp:

4. Combobox Tag (Form Tag) Example

The combo box is basically an HTML INPUT of
type text and HTML SELECT grouped together
to give you a combo box functionality. You can
place text in the INPUT control by using the
SELECT control or type it in directly in the text
field.

Add the following code snippet into the
struts.xml file.

<action name=”comboboxTag”
class=”net.javajazzup.comboboxTag”>

<result>/pages/formTags/
comboboxTag.jsp</result>
</action>

Create a list in the action class and populate it
with various items as shown in the “
comboboxTag” class.

comboboxTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class comboboxTag extends
ActionSupport{

 private List fruits;
 public String execute()throws Exception{
 fruits = new ArrayList();
 fruits.add(“Apple”);
 fruits.add(“Mango”);
 fruits.add(“Orange”);
 fruits.add(“Pine Apple”);
 return SUCCESS;

 }

 public List getFruits(){
 return fruits;
 }
}

Create a jsp using the tags <s:combobox>

The tag <s:combobox label=”Colors Name”
name=”colorNames” headerValue=”— Please
S e l e c t — ” h e a d e r K e y = ” 1 "
list=”{‘Black’,’Green’,’White’,’Yellow’,’Red’,’Pink’}”
/> prints a combobox with name color Name
and an HTML INPUT of type text and HTML
SELECT grouped together created using the
list.

Struts2 Tags

 Feb-08 Java Jazz Up 41

The tag <s:checkboxlist name=”Animals-name”
list=”animals” /> prints a combobox with name
Fruits Name and an HTML INPUT of type text
and HTML SELECT grouped together created
using the “fruits” list of the action class
“checkboxlistTag”.

comboboxTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
 <head>
 <title>Combobox (Form Tag) Tag
Example</title>
 </head>
 <body>
 <h2>Combobox Tag Example</h2>
 <s:form>
 <s:combobox label=”Colors Name”
name=”colorNames”
 headerValue=”— Please Select —”
 headerKey=”1"
list=”{‘Black’,’Green’,’White’,’Yellow’,
 ‘Red’,’Pink’}” />
 <s:combobox label=”Fruits Name”
name=”fruitsNames”
 headerValue=”— Please Select —”
 headerKey=”1" list=”fruits” />
 </s:form>
 </body>
</html>

Output of the comboboxTag.jsp:

5. Datetimepicker Tag (Form Tag) Example

The datetimepicker tag is a UI tag that is used
to render a date/time picker in a dropdown
container. A stand-alone DateTimePicker widget
makes it easy to select a date/time, or
increment by week, month, and/or year. It is
possible to customize the user-visible
formatting with either the ‘formatLength’ (long,
short, medium or full) or ‘displayFormat’
attributes. By defaulty current locale will be
used.

Add the following code snippet into the
struts.xml file.

<action name=”datetimepickerTag”
class=”net.javajazzup.includeTag”>

<result>/pages/formTags/
datetimepickerTag.jsp</result>
</action>

Create an action class as shown:

includeTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class includeTag extends ActionSupport
{

Struts2 Tags

42 Java Jazz Up Feb-08

 private Date myBirthday;
 public String execute() throws Exception{
 setMyBirthday(new Date(“Jan 12, 1984
11:21:30 AM”));
 return SUCCESS;
 }
 public void setMyBirthday(Date date){
 this.myBirthday = date;
 }
 public Date getMyBirthday(){
 return myBirthday;
 }
}

Create a jsp using the
tag<s:datetimepicker>

This tag renders a date/time picker in a
dropdown container.

The tag <s:datetimepicker name=”myBirthday”
label=”My Birth Day (dd-MM-yyyy)”
displayFormat=”dd-MM-yyyy” /> picks the data
from the action class “includeTag” using the
parameter name=”myBirthday” using the
display format as displayFormat=”dd-MM-yyyy”.

datetimepickerTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
 <head>
 <title>Datetimepicker (Form Tag) Tag
Example</title>
 <s:head theme=”ajax” />
 </head>
 <body>
 <h2>Datetimepicker Tag Example</h2>
 <s:datetimepicker name=”myBirthday”
label=”Select date:(dd-MM-yyyy)”
displayFormat=”dd-MM-yyyy” />
 </body>
</html>

Output of the datetimepickerTag.jsp:

Figure6

6. Doubleselect Tag (Form Tag) Example

The doubleselect tag is a UI tag that renders
two HTML select elements with second one
changing displayed values depending on
selected entry of first one.

Add the following code snippet into the
struts.xml file

<action name=”doubleselectTag”>
<result>/pages/formTags/

doubleselectTag.jsp</result>
</action>

Create a jsp using the tag <s:doubleselect>
This tag renders two HTML select elements with
second one changing displayed values
depending on selected entry of first one. This
tag contains various parameters:

The headerKey parameter sets the header key
of the second list. Must not be empty. In our
case we have set it to”1"
The headerValue parameter sets the header
value of the second list. In our case we have
set it to “— Please Select —”
The doubleName parameter sets the name for
complete component. In our case we have set
it as : doubleName=”dishes”

The doubleList sets the second iterable source
to populate from. In our case we have set it as
:
doubleList=”top == ‘Color’ ?
{‘Black’,’Green’,’White’,

‘Yellow’,’Red’,’Pink’} : {
‘Apple’,’Banana’,’Grapes’,’Mango’}”

doubleselectTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
 <head>

Struts2 Tags

 Feb-08 Java Jazz Up 43

 <title>Doubleselect Tag Example</title>
 </head>
 <body>
 <h2>Doubleselect Tag Example</h2>
 <s:form>
 <s:doubleselect label=”Select Item”
 headerValue=”— Please Select —”
 headerKey=”1" list=”{‘Color’,’Fruits’}”
 doubleName=”dishes”
 doubleList=”top == ‘Color’ ?
{‘Black’,’Green’,’White’,
 ‘Yellow’,’Red’,’Pink’} : {
‘Apple’,’Banana’,’Grapes’,’Mango’}” />
 </s:form>
 </body>
</html>

Output of the doubleselectTag.jsp:

7. File Tag (Form Tag) Example

The file tag is a UI tag that renders an HTML file
input element achieved through browsing.

Add the following code snippet into the
struts.xml file

<action name=”fileTag”>
<result>/pages/formTags/fileTag.jsp</

result>
</action>

Create a jsp using the tag <s:file>
It renders an HTML file input element. The
parameters name is used to set a name for
element which we have used as
name=”uploadFile” and the parameter accept
is the HTML accept attribute that indicates the
accepted file mime types which we have used
as accept=”text/*”.

fileTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
 <head>
 <title>File Tag Example</title>
 </head>
 <body>
 <h2>File Tag Example</h2>
 File Name
 <s:form>
 <s:file name=”uploadFile” accept=”text/*”
/>
 </s:form>
 </body>
</html>

Output of the fileTag.jsp

8. Form Tag Example

The form tag is a UI tag that renders HTML
an input form. The remote form allows the form
to be submitted without the page being
refreshed. The results from the form can be
inserted into any HTML element on the page.

Struts2 Tags

44 Java Jazz Up Feb-08

Add the following code snippet into the
struts.xml file

<action name=”formTag”>
<result>/pages/formTags/formTag.jsp</

result>
</action>

Create a jsp using the tag <s:form>.It renders
HTML as an input form

formTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
 <head>
 <title>Form Tag Example</title>

</head>
 <body>

<h2>Form Tag Example</h2>
 <s:form>

<s:textfield name=”username”
label=”Login name”/>

<s:password name=”password”
label=”Password”/>

<s:submit value=”Login” align=”center”/>
</s:form>

 </body>
</html>

Output of the formTag.jsp:

9. Label Tag (Form Tag) Example

The label tag is a UI tag that is used to render

an HTML LABEL that allow to output label:name
type of combinations that has the same format
treatment as the rest of UI controls.

Add the following code snippet into the
struts.xml file.

<action name=”labelTag”>
<result>/pages/formTags/labelTag.jsp</

result>
</action>

Create a jsp using the tag <s:label>
It renders an HTML LABEL that allow to output
<s: label name=” “ value=” “ /> combination
that has the same format treatment as the
rest of UI controls.

labelTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
 <head>
 <title>Label Tag Example</title>

</head>
 <body>

<h2>Label Tag Example</h2>
 <s:form>

<s:label name=”name” value= “Name” />
<s:label name=”roll” value= “Roll” />
<s:label name=”address” value=

“Address: “ />
</s:form>

 </body>
</html>

Struts2 Tags

 Feb-08 Java Jazz Up 45

Output of the labelTag.jsp:

10. Optiontransferselect Tag (Form Tag)
Example

The Optiontransferselect tag is a UI tag that
creates an option transfer select component.
There are two <select ...> tags with buttons in
the middle of them, which allows options in each
of the <select ...> to be moved between them.
It auto-selects all its elements upon its
containing form submission.

Add the following code snippet into the
struts.xml file.

<action name=”optiontransferselectTag”>
<result>/pages/formTags/

optiontransferselectTag.jsp</result>
</action>

Create a jsp using the tag
<s:optiontransferselect> This tag creates an
option transfer select component. This tag
contains various parameters:

The label parameter sets label expression used
for rendering a element specific label. In our
case we have set it to “Employee Records”
The name parameter sets the name for the
element. In our case we have set it to
“leftSideEmployeeRecords”
The leftTitle parameter sets the left title. In
our case we have set it to “RoseIndia”
The rightTitle parameter sets the right title. In

our case we have set it to “JavaJazzUp”
The headerKey sets the header key of the
given list. It must not be empty. In our case
we have set it to:”headerKey”
The headerValue sets the header value of the
given list. In our case we have set it to:”—
Please Select —”
The doubleName sets the name for complete
component. In our case we have set it
to:”rightSideEmployeeRecords”
The doubleHeaderKey sets the header key
for the second list. In our case we have set it
to:”doubleHeaderKey”
The doubleHeaderValue sets the header
value for the second list. In our case we have
set it to:”— Please Select —”

optiontransferselectTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags”
%>
<html>
 <head>
 <title>Optiontransferselect Tag
Example!</title>

</head>
 <body>

<h2>Optiontransferselect Tag Example</
h2>

<s:form>
<s:optiontransferselect

label=”Employee Records”
name=”leftSideEmployeeRecords”
leftTitle=”RoseIndia”
rightTitle=”JavaJazzUp”
list=”{‘RI_Emp1’,

‘RI_Emp2’,’RI_Emp3',’RI_Emp4',’RI_Emp5'}”
headerKey=”headerKey”
headerValue=”— Please Select —”

doubleName=”rightSideEmployeeRecords”
doubleList=”{‘JJU_Emp1’,

‘JJU_Emp2’,’JJU_Emp3',
‘JJU_Emp4’,’JJU_Emp5'}”

doubleHeaderKey=”doubleHeaderKey”
doubleHeaderValue=”— Please Select —”

/>
</s:form>
</body>

</html>

Struts2 Tags

46 Java Jazz Up Feb-08

Output of the optiontransferselectTag.jsp:

11. Optgroup Tag (Form Tag) Example

The optgroup tag is a UI tag that creates an
optgroup component which needs to resides
within a select tag <s:select>.

Add the following code snippet into the
struts.xml file

<action name=”optgroupTag”>
<result>/pages/formTags/

optgroupTag.jsp</result>
</action>

Create a jsp using the tag <s:optgroup>

Create a jsp using the tag <s:optgroup> within
the <s:select> tag. It creates an optgroup
component. This tag contains few parameters:

The label parameter sets the label attribute. In
our case we have set it to “Hardware” and
“Software”.

optgroupTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
 <head>
 <title>Optgroup Tag Example</title>

</head>
 <body>

<h2>Optgroup Tag Example</h2>
<s:form>

<s:select label=”Please Select”
name=”select”

 list=”%{#{‘PROGRAMMING’:’Programming’,
‘DATABASE’:’DataBase’,’WEBAPPLICATION’:
’WebApplication’}}”>

 <s:optgroup label=”Hardware”
 list=”%{#{‘CPU’:’Centeral

Processing
Unit’,’MOUSE’:’Mouse’,’KEYBOARD’:’Keyboard’}}”
/>

 <s:optgroup label=”Sofrware”
 list=”%{#{‘SYSTEM

SOFTWARE’:’System Software’,’APPLICATION
SOFTWARE’:’Application Software’}}” />

</s:select>
</s:form>
</body>

</html>

Struts2 Tags

 Feb-08 Java Jazz Up 47

Output of the optgroupTag.jsp:

12. Password Tag (Form Tag) Example

The password tag is a UI tag that renders an
HTML input tag of type password.

Add the following code snippet into the
struts.xml file

<action name=”passwordTag”>
<result>/pages/formTags/

passwordTag.jsp</result>
</action>

Create a jsp using the tag <s:password>
It renders an HTML input tag of type password.

passwordTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
 <head>
 <title>Password Tag Example</title>

</head>
 <body>

<h2>Password Tag Example</h2>
<s:form>

<s:password label=”Enter Password”
name=”password” size=”10" maxlength=”8" /
>

</s:form>
</body>

</html>

Output of the passwordTag.jsp:

13. Radio Tag (Form Tag) Example

The radio tag is a UI tag that renders a radio
button input field.

Add the following code snippet into the
struts.xml file

<action name=”radioTag”
class=”net.javajazzup.checkboxlistTag”>

<result>/pages/formTags/radioTag.jsp</
result>
</action>

Create an action class with two lists as shown
below:

checkboxlistTag.java

package net.javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class checkboxlistTag extends

Struts2 Tags

48 Java Jazz Up Feb-08

ActionSupport{

 private List fruits;
 private List animals;
 public String execute()throws Exception{
 fruits = new ArrayList();
 fruits.add(“Apple”);
 fruits.add(“Mango”);
 fruits.add(“Orange”);
 fruits.add(“Pine Apple”);

 animals = new ArrayList();
 animals.add(“Dog”);
 animals.add(“Elephant”);
 animals.add(“Ox”);
 animals.add(“Fox”);
 return SUCCESS;

 }

 public List getFruits(){
 return fruits;
 }

 public List getAnimals(){
 return animals;
 }
}

Create a jsp using the tag <s:radio> It renders
a radio button input field.

radioTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
 <head>
 <title>Radio Tag Example!</title>

</head>
 <body>

<h2>Radio Tag Example</h2>
<s:form>

<s:radio label=”Fruits” name=”fruitsname”
list=”fruits” />

<s:radio label=”Animals”
name=”animalsname” list=”animals” />

</s:form>
</body>

</html>

Output of the radioTag.jsp:

14. Reset Tag (Form Tag) Example

The reset tag is a UI tag that is used together
with the form tag to provide form resetting.

It renders a reset button.
The reset can have two different types of
rendering:

input: renders as html <input type=”reset”...>
button: renders as html <button
type=”reset”...>

The button type has advantages as it adds the
possibility to separate the submitted value from
the text shown on the button face.

Add the following code snippet into the
struts.xml file

<action name=”resetTag”>
<result>/pages/formTags/resetTag.jsp</

result>
</action>

Create a jsp using the tag <s:reset>
It renders a reset button which provides the
form resetting .

resetTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>
<html>
 <head>
 <title>Reset Tag Example!</title>

</head>
 <body>

Struts2 Tags

 Feb-08 Java Jazz Up 49

<h2>Reset Tag Example</h2>
<s:form>

<s:textfield name=”username” label=”User
Name” size=”15" maxlength=”10" />

<s:password name=”password”
label=”Password” size=”15" maxlength=”10" /
>

<s:reset value=”Reset” />
</s:form>
</body>

</html>

Output of the resetTag.jsp:

15. Select Tag (Form Tag) Example

The select tag is a UI tag that is used to render
a HTML input tag of type select.

Add the following code snippet into the
struts.xml file.

<action name=”selectTag”
class=”net.javajazzup.weekDay”>

<result>/pages/formTags/selectTag.jsp</
result>
</action>

Create an action class with a list populated with
various items as shown below:

weekDay.java

package net. javajazzup;
import
com.opensymphony.xwork2.ActionSupport;
import java.util.*;

public class weekDay extends ActionSupport{

 private List day;
 public String execute()throws Exception{
 day = new ArrayList();
 day.add(“Sunday”);
 day.add(“Monday”);
 day.add(“Tuesday”);
 day.add(“Wednesday”);
 day.add(“Thursday”);
 day.add(“Friday”);
 day.add(“Saturday”);
 return SUCCESS;

 }

 public List getDay(){
 return day;
 }
}

Create a jsp using the tag <s:select>
This tag creates an HTML input tag of type
select. This tag contains various parameters:

The label parameter sets the label expression
used for rendering a element specific label. In
our 1st case we have set it to “Select Day”
The name parameter sets the name for the
element. In our 1st case we have set it to
“daysname”
The headerKey sets key for first item in list..
It must not be empty and wrongly specified. In
both cases we have set it to:”1"
The headerValue sets the Value expression
for the first item in the list. In both cases we
have set it to:”— Please Select —”

selectTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Select Tag Example</title>

Struts2 Tags

50 Java Jazz Up Feb-08

</head>
<body>
<h2>Select Tag Example</h2>
<s:form>

<s:select label=”Select Day”
name=”daysname”
headerKey=”1"
headerValue=”— Please Select —”
list=”day”
/>

<s:select label=”Select Month”
name=”monthname”
headerKey=”1"
headerValue=”— Please Select —”
list=”#{‘01’:’January’,’02':’February’,’03':’

March’,’04':’April’,’05':’May’,’06':’June’,’07':’July’,
‘08’:’August’,’09':’September’,’10':’
October’,’11':’November’,’12':’December’}”

/>
</s:form>
</body>

</html>

Output of the electTag.jsp:

16. Submit Tag (Form Tag) Example
The submit tag is a UI tag that is used to render
a submit button. The submit tag is used
together with the form tag to provide
asynchronous form submissions. The submit
can have three different types of rendering:

input: renders as html <input type=”submit”...>
image: renders as html <input type=”image”...>
button: renders as html <button
type=”submit”...>

Struts2 Tags

 Feb-08 Java Jazz Up 51

Add the following code snippet into the
struts.xml file.

<action name=”submitTag”>
<result>/pages/formTags/submitTag.jsp</

result>
</action>

Create a jsp using the tag <s:submit>
This tag renders a submit button. This tag
contains various parameters:

The value parameter presets the value of input
element. In our 1st case we have set it to
“Submit”.
The type parameter sets the types of submit
to use. Valid values are input, button and image.
In our case we have set it to “image”
The src supply an image src for image type
submit button. It will have no effect for types
input and button. In our case we have set it
to:”/ struts2UIformtags /pages/ formTags /
submit.gif”
The align sets HTML align attribute. In our case
we have set it to:”center”

submitTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Submit Tag Example</title>

</head>
<body>
<h2>Submit Tag Example</h2>
<s:form>

<s:textfield name=”username” label=”User
Name” size=”15" maxlength=”10" />

<s:textfield name=”password”
label=”Password” size=”15" maxlength=”10" /
>

<s:submit value=”Submit” />
<!— To use gif image on button —>
<s:submit type=”image” src=”/

struts2UIformtags/pages/formTags/
submit.gif” align=”center” />

</s:form>
</body>

</html>

Output of the submitTag.jsp:

17. Textarea Tag (Form Tag) Example

The textarea tag is a UI tag that is used to
render HTML textarea.

Add the following code snippet into the
struts.xml file.

<action name=”textareaTag”>
<result>/pages/formTags/textareaTag.jsp</

result>
</action>

Create a jsp using the tag <s:textarea >
This tag renders HTML textarea tag.
<s:textarea label=”Description”
name=”description” cols=”15" rows=”10" /> tag
displays a HTML textarea with label equal to
Description, column value=15 and row
value=10.

Struts2 Tags

52 Java Jazz Up Feb-08

textareaTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Textarea Tag Example</title>
</head>
<body>
<h2>Textarea Tag Example</h2>
<s:form>

<s:textarea label=”Description”
name=”description” cols=”15" rows=”10" />

</s:form>
</body>

</html>

Output of the textareaTag.jsp:

18. Textfield Tag (Form Tag) Example

The textfield tag is a UI tag that is used to
render an HTML input field of type text.

Add the following code snippet into the
struts.xml file.

<action name=”textfieldTag”>
<result>/pages/formTags/textfieldTag.jsp</

result>
</action>

Create a jsp using the tag <s:textfield >
This tag renders an HTML input field of type
text.

<s:textfield label=”Employee Name”
name=”empname” size=”15" maxlength=”10"
/> tag displays an HTML text field with label
equal to Employee Name with length of 15
columns.

textfieldTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Textfield Tag Example</title>
</head>
<body>
<h2>Textfield Tag Example</h2>
<s:form>

<s:textfield label=”Employee Name”
name=”empname” size=”15" maxlength=”10"
/>

</s:form>
</body>

</html>

Output of the textfieldTag.jsp:

19. Updownselect Tag (Form Tag)
Example

The updownselect tag is a UI tag that creates

Struts2 Tags

 Feb-08 Java Jazz Up 53

a select component with buttons to move up
and down the elements in the select component
. When the containing form is submitted, its
elements will be submitted in the order they
are arranged (top to bottom).

Add the following code snippet into the
struts.xml file.

<action name=”updownselectTag”>
<result>/pages/formTags/

updownselectTag.jsp</result>
</action>

Create a jsp using the tag <s:updownselect>
This tag creates a select component with
buttons to move up and down. This tag contains
various parameters:

The name parameter presets the value of input
element.. In our case we have set it to
“daysname”
The moveDownLabel parameter is used for
the text to display on the move down button.
In our case we have set it to “Move Down”
The moveUpLabel parameter is used for the
text to display on the move up button. In our
case we have set it to:”Move Up”
The selectAllLabel parameter is used for the
text to be displayed on the select all button. In
our case we have set it to: “Select All”

updownselectTag.jsp

<%@ taglib prefix=”s” uri=”/struts-tags” %>

<html>
<head>

<title>Updownselect Tag Example</title>

</head>
<body>
<h2>Updownselect Tag Example</h2>
<s:form>

<s:updownselect

list=”#{‘01’:’January’,’02':’February’,’03':’March’,’04':
’April’, ‘05’:’May’,’06':’June’,’07':’July’,’08':’
August’,’09':’September’,
‘10’:’October’,’11':’November’,
’12':’December’}”

name=”daysname”

headerKey=”1"
headerValue=”— Please Select —”
moveUpLabel=”Move Up”
moveDownLabel=”Move Down”
selectAllLabel=”Select All”
/>

</s:form>
</body>

</html>

Output of the updownselectTag.jsp:
Figure20

Struts2 Tags

54 Java Jazz Up Feb-08

Immediate Event Handling Example

Event Handling is one of the important concepts
in JSF. This section provides a simple JSF
application, which explains how to implement
“immediate” event handling in JSF. Immediate
event handling is useful in cases where you do
not need to validate an entire page to process
a user input. Normally, the event handler for
components executes in the invoke application
phase. But when the “immediate” attribute is
set to “true” for the component then event
executes in the apply request values phase and
forces JSF to skip directly to the render response
phase leaving all intermediate phases of the life
cycle. In this case the whole form is not validated
before event handler is invoked and displays
response directly.

This application takes both types of events i.e.
Value Change Event and Action Event. When
the user changes its choice from the list of song,
a value change event occurs which displays
detailed information of the selected song and
when it clicks a radio button to select a category
of books, a value change listener event is fired
for this component which displays subcategory
of the selected category i.e. displays a list of
books of the selected category. When the user
clicks the button labeled “Show All Selected”
then an action event registered for the
component is fired which displays the items
selected

This application can be downloaded as zip
format from the link provided in every page of
the section. Extract this file and place the folder
in the webapp directory of Tomcat server.
Requesting the url http://localhost:8080/
jsfImmediateEventapp through the browser will
display “select.jsp” page where you can test
the events. This page is shown as below.

JSF Application

When the user submits the above URL
“index.jsp” page is called which delegates the
control to the “select.jsp” page.

index.jsp

<html>
<body>

<jsp:forward page=”/pages/select.jsf”/>
</body>

</html>

select.jsp

<%@ taglib uri=”http://java.sun.com/jsf/
html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/
core” prefix=”f” %>
<html>
<head>
<title>JSF Immediate Event Handling
Example</title>
</head>
<body>
<f:view>
<h:form id=”songForm”>

</br>
<h:selectOneMenu id=”songList”

value=”#{backingBean.selectedSong}”
valueChangeListener=
”#{backingBean.processValueChange1}”
immediate=”true”
onchange=”this.form.submit()”>

 Feb-08 Java Jazz Up 55

<f:selectItems
value=”#{backingBean.songList}”/>

</h:selectOneMenu>
</br>
<h:outputText id=”result”

value=”#{backingBean.songDetail}”/>
</br></br>
<h:selectOneRadio id=”catId”

value=”#{backingBean.category}”
immediate=”true” onclick=”submit()”
valueChangeListener=
”#{backingBean.processValueChange2}”>

<f:selectItems
value=”#{backingBean.categories}”/>

</h:selectOneRadio>
<h:selectOneListbox id=”subcategory”

value=”#{backingBean.subCategory}”
binding=”#{backingBean.subCategoryList}”
rendered = “false”>

<f:selectItems
value=”#{backingBean.subCategories}”/>

</h:selectOneListbox>
</br></br>
<h:commandButton id=”cb” value=”Show

All Selected” immediate=”true”
actionListener=
”#{backingBean.processActionShow}”/>

</br>
<h:outputText id=”showValue”

binding=”#{backingBean.showAllSelected}”
rendered=”true”/>
</h:form>
</f:view>
</body>
</html>

In the above code, you can see that immediate
attribute is set to “true” i.e. handle the events
for the component in the apply request values
phase rather than the invoke application phase.
JavaScript code is used to process the value
change event immediately when the user makes
a change. Component generating action event
doesn’t require this support so there is no need
to write JavaScript code to submit the
component for processing.

The event handler methods:

The value change event handler method for the

component used for selection of the song is
processValueChange1() which has been
mentioned in the attribute
valueChangeListener.

valueChangeListener=
”#{backingBean.processValueChange1}”

The value change event handler method for
the component used for selection of category
is processValueChange2() which has been
mentioned in the attribute

valueChangeListener.

valueChangeListener=
”#{backingBean.processValueChange2}”>

The action event handler method for the
component used to show all selected items is
processActionShow() which has been
mentioned in the attribute actionListener.

actionListener=
”#{backingBean.processActionShow}”

Backing Bean:

Backing bean named “Bean.java” implements
event handler methods. It’s code is given
below:

Bean.java

package javajazzup;

import java.util.*;
import javax.faces.component.*;
import
javax.faces.component.html.HtmlOutputText;
import
javax.faces.component.html.HtmlSelectOneListbox;
import javax.faces.event.ActionEvent;
import javax.faces.event.ValueChangeEvent;
import javax.faces.context.FacesContext;
import javax.faces.model.SelectItem;

public class Bean{
// Stores song titles
ArrayList songList;

JSF Application

56 Java Jazz Up Feb-08

// Stores song detail
HashMap detail;
String selectedSong;
String songDetail = “Select a song to view

information”;
private String category;
private List categories;
private UIInput subCategoryList;
private String subCategory;
private List subCategories;
private HtmlOutputText showAllSelected;

public Bean(){
songList = new ArrayList();
//Add song titles to songList ArrayList.
songList.add(new SelectItem(“songSelect”,

“—Select One—”, “s”));
songList.add(new SelectItem(“song1”,

“Song One”, “s1”));
songList.add(new SelectItem(“song2”,

“Song Two”, “s2”));
songList.add(new SelectItem(“song3”,

“Song Three”, “s3”));

detail = new HashMap();
//Put song details in detail HashMap
detail.put(“songSelect”, “Select a song to

view information”);
detail.put(“song1”, “Album1, Singer1,

Duration: 7.13”);
detail.put(“song2”, “Album2, Singer2,

Duration: 5.20”);
detail.put(“song3”, “Album3, Singer3,

Duration: 6.35”);

categories = new ArrayList();
//Add sets to categories ArrayList.
categories.add(new SelectItem(“ch1”, “Set

A”));
categories.add(new SelectItem(“ch2”, “Set

B”));
}

public String getSelectedSong () {
return selectedSong;

}
public void setSelectedSong (String

selectedSong) {
this.selectedSong = selectedSong;

}
public ArrayList getSongList() {

return songList;
}
public void setSongList(ArrayList songList)

{
this.songList = songList;

}
public String getSongDetail() {

return songDetail;
}
public void setSongDetail(String

songDetail){
this.songDetail = songDetail;

}
public String getCategory(){

return category;
}
public void setCategory(String category){

this.category = category;
}
public String getSubCategory(){

return subCategory;
}
public void setSubCategory(String

subCategory){
this.subCategory = subCategory;

}
public void setCategories(List opt){

categories = opt;
}
public List getCategories(){

return categories;
}
public void setSubCategories(List opt){

subCategories = opt;
}
public List getSubCategories(){

return subCategories;
}
public void setSubCategoryList(UIInput

aSubCategoryList) {
this.subCategoryList = aSubCategoryList;

}
public UIInput getSubCategoryList() {

return subCategoryList;
}
public void

setShowAllSelected(HtmlOutputText
showAllSelected) {

this.showAllSelected = showAllSelected;
}
public HtmlOutputText getShowAllSelected()

JSF Application

 Feb-08 Java Jazz Up 57

{
return showAllSelected;

}

String songvalue=”songSelect”;
/*Value change listener method*/
public void

processValueChange1(ValueChangeEvent
vce){

songvalue = (String) vce.getNewValue();

setSongDetail((String)detail.get(songvalue));
/*Render the response*/

FacesContext.getCurrentInstance().renderResponse();
}

String selectchoice=”No Choice”;
/*Value change listener method*/
public void

processValueChange2(ValueChangeEvent
event){

subCategoryList.setRendered(true);
selectchoice= (String)

event.getNewValue();

if(selectchoice.equals(“ch1”)){
this.subCategories = new ArrayList();
SelectItem suboption = new

SelectItem(“subch1”, “Core Java”);
subCategories.add(suboption);
suboption = new SelectItem(“subch2”,

“Java Script”);
subCategories.add(suboption);
suboption = new SelectItem(“subch3”,

“Ajax”);
subCategories.add(suboption);
this.subCategories = subCategories;

}
if(selectchoice.equals(“ch2”)){

this.subCategories = new ArrayList();
SelectItem suboption2 = new

SelectItem(“subch4”, “Servlet”);
subCategories.add(suboption2);
suboption2 = new SelectItem(“subch5”,

“JSP”);
subCategories.add(suboption2);
suboption2 = new SelectItem(“subch6”,

“JSF”);
subCategories.add(suboption2);

}

FacesContext context =
FacesContext.getCurrentInstance();

context.renderResponse();
}

/*Action listener method*/
public void

processActionShow(ActionEvent event){
String bookvalue =

(String)subCategoryList.getSubmittedValue();
String bookname =

getBookName(bookvalue);
if(songvalue.equals(“songSelect”)){

showAllSelected.setValue(“No song
selected. “+bookname+” book selected.”);

}
else{

String songname =
getSongName(songvalue);

showAllSelected.setValue(songname+”
selected. “+bookname+” book selected.”);

}
}

public String getBookName(String
bookvalue){

String bookname = “No”;
if(subCategories == null){
}
else{

ListIterator listItr =
subCategories.listIterator();

while(listItr.hasNext()) {
SelectItem si =

(SelectItem)listItr.next();
String value = (String)(si).getValue();
if(value.equals(bookvalue)) {

bookname = (si).getLabel();
}

}
}
return bookname;

}

public String getSongName(String
songvalue){

String songname=””;
for(int i=0;i<songList.size();i++){

if(((String)(((SelectItem)(songList.get(i))).
getValue())).equals(songvalue)){

JSF Application

58 Java Jazz Up Feb-08

songname=(String)(((SelectItem)
(songList.get(i))).getLabel());

}
}
return songname;

}

}

If the user selects “Song One” and “Ajax” from
“Set A” then its output will look like:

JSF Application

 Feb-08 Java Jazz Up 59

I. Observer Design Pattern

This design pattern defines one to many
dependency between the objects so that if an
object changes its state then all the dependent
objects are notified and updated automatically.
It is mainly used, to maintain consistency
between objects, support to broadcast
communication, to maintain classes for further
use by making them loosely coupled, to make
GUI application and many more. Java API
provides a built-in Observable class and
Observer interface.

Here we are taking an example just to
demonstrate that how observer pattern works,
for this, the example creates two windows. The
first window takes the input from the user and
the second window displays this input. As soon
as the data is entered in the textfield and enter
button is pressed, the second window gets the
message and displays it with a dialog. The
example uses the private inner class.

import javax.swing.*;
import java.awt.event.*;
import java.util.*;
class ShowForm extends JFrame {
 InputFormObserver inputformobserver =
new InputFormObserver();
 InputForm inputForm ;
 Observable obsInput;
 JTextField display;
 //...
 public ShowForm() {
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }});
 inputForm = new InputForm();
 obsInput = inputForm.getInputInfo();
 obsInput.addObserver(inputformobserver);

 display = new JTextField(10);
 display.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 }
 });
 getContentPane().add(display);
 setTitle("Observer form");
 setSize(200,100);

 setLocation(200,100);
 setVisible(true);
 }

 private class InputFormObserver
 implements Observer {
 public void update(Observable ob, Object o) {
 doSomeUpdate();
 if (obsInput.countObservers()>0)
 obsInput.deleteObservers();
 obsInput = inputForm.getInputInfo();
 obsInput.addObserver(inputformobserver);
 }
 }
 public void doSomeUpdate() {
 display.setText(inputForm.getText());
 JOptionPane.showMessageDialog
(ShowForm.this, "This form has been updated");
 }

 public static void main(String args[]) {
 ShowForm df = new ShowForm();
 }
}

class InputForm extends JFrame {
 public InformDisplay inform = new InformDisplay();
 //...
 JTextField input= new JTextField(10);
 public InputForm() {
 JPanel panel= new JPanel();
 input.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 inform.notifyObservers();
 }
 });
 panel.add(new JLabel("Enter: "));
 panel.add(input);
 addWindowListener
(new WindowAdapter() { public void windowClosing
(WindowEvent e) {
 System.exit(0);
 }});
 getContentPane().add(panel);
 setTitle("Observable form");
 setSize(200,100);
 setVisible(true);
 }
 public Observable getInputInfo() {
 return inform;
 }

Design Pattern

60 Java Jazz Up Feb-08

 public String getText() {
 return input.getText();
 }

 private class InformDisplay extends Observable {
 public void notifyObservers() {
 setChanged();
 super.notifyObservers();
 }
 public String getChange() {
 return input.getText();
 }
 }
 //...}

As we pass the command "java Show" on the
command prompt, two windows are displayed.
In which the first window takes the input from
the user and the other window displays the
inputted data.

II.State Design Pattern

The State pattern is used whenever an
enclosing class switches among the number of
related contained classes and passes the
method calls on the current contained class.
This design pattern switches between internal
classes in such a manner that the enclosing
object appears to change its state. This design
pattern also provides memory for the instance
variables of a class. It localizes the state-specific
behavior and partitions behavior for different
states. It makes the explicit transition.

Here is an example that demonstrate State
Design Pattern.

StateContext.java

public class StateContext {
 private StateName StateName;

 public StateContext() {
 setStateName(new StateNameStars());
 //start with stars
 }

 public void setStateName(StateName StateNameIn) {
 this.StateName = StateNameIn;
 }

 public void showName(String nameIn) {
 this.StateName.showName(this, nameIn);
 }
}

StateName.java

public interface StateName {
 public void showName(StateContext StateContext,
 String nameIn);
}

StateNameExclaim.java

public class StateNameExclaim
implements StateName {
 public StateNameExclaim() {}

 public void showName(StateContext StateContext,
 String nameIn) {
 System.out.println(nameIn.replace(' ','!'));
 //
show exclaim only once, switch back to stars
 StateContext.setStateName(new StateNameStars());
 }
}

StateNameStars.java

public class StateNameStars implements
StateName {
 int starCount;

 public StateNameStars() {
 starCount = 0;
 }

 public void showName(StateContext StateContext,
 String nameIn) {
 System.out.println(nameIn.replace(' ','*'));
 //
 show stars twice, switch to exclamation point
 if (++starCount > 1) {
 StateContext.setStateName(
 new StateNameExclaim());
 }
 }
}

Design Pattern

 Feb-08 Java Jazz Up 61

TestState.java

class TestState {
 public static void main(String[] args) {
 StateContext stateContext = new StateContext();
 stateContext.showName(
 "Mr. Deepak Kumar - "+
 "IT Manager Roseindia Technologies");
 stateContext.showName(
 "Mr. Amit Kumar: Operational Manager
Roseindia Technologies");
 stateContext.showName(
 "Mr. Aquil Ahmad Khan: HR
Manager: Roseindia Technologies");
 stateContext.showName(
 "And this is me, Mohd. Zulfiqar Ahmed:
 Senior Software Engineer
Roseindia Technologies");
 }
}

Here is the Output:

C:\DP\State>java
TestState Mr.*Deepak*Kumar*-
*IT*Manager*Roseindia*Technologies
Mr.*Amit*Kumar:*Operational*Manager
*Roseindia*Technologies
And*this*is*me,*Mohd.*Zulfiqar*Ahmed:*Senior
*Software*Engineer*Roseindia*Technologies

III.Strategy pattern

The Strategy pattern is a design pattern in
which an object controls which of a family of
methods is called simply. Each method of this
family stays in its own class and extends a
common base class. This method introduces a
family of algorithms, encapsulates them with
each other and makes them interchangeable.
This pattern provides pluggable behavior that
enforces the client access to services. This
pattern is used in those situations where many
related classes differs only in their behavior.
Here we are taking an example that encapsulates
several algorithms (classes) into a single module
just to provides the alternatives. These
alternatives are provided by generating random
numbers to serve the purpose.

interface StrategyPattern {

 public void print();
}
class GetIt implements StrategyPattern {
 public void print() {
 System.out.println("Still you are not late!");
 }
}
class StartNow implements StrategyPattern {
 public void print() {
 System.out.println("You can also start from now!");
 }
}
class LooseNothing implements StrategyPattern {
 public void print() {
 System.out.println
("You didn't loose anything so
get up and start now!");
 }
}
class Dice {
 public int throwIt() {
 return (int)(Math.random()*6)+1;
 }
}
class Test {
 static void goodLuck() {
 int yourluckyNum = new Dice().throwIt();
 StrategyPattern sp;
 switch (yourluckyNum) {
 case 2: sp = new GetIt();
 break;
 case 5: sp = new StartNow();
 break;
 default: sp = new LooseNothing();
 }
 sp.print();
 }
 public static void main(String[] args) {
 goodLuck();
 }
}

Here is the output:

C:\DP1\Strategy Pattern>java Test
You didn't loose anything so get up and start
now!

C:\DP1\Strategy Pattern>java Test
Still you are not late!

Design Pattern

62 Java Jazz Up Feb-08

C:\DP1\Strategy Pattern>java Test
You can also start from now!

C:\DP1\Strategy Pattern>java Test
You didn't loose anything so get up and start
now!

Design Pattern

 Feb-08 Java Jazz Up 63

1. Send data from database in PDF file as
servlet response:

This example retrieves data from MySQL and
sends response to the web browser in the form
of a PDF document using Servlet. This program
uses iText, which is a java library containing
classes to generate documents in PDF, XML,
HTML, and RTF. For this you need to place
iText.jar file to lib folder of your JDK and set
classpath for it. You can download this jar file
from the link http:// www.lowagie.com/iText/
download.html The program below will embed
data retrieved from database in PDF document.

ShowPdf.java

import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.lowagie.text.*;
import com.lowagie.text.pdf.*;

public class ShowPdf extends HttpServlet{
public void doGet(HttpServletRequest req,

HttpServletResponse res) throws
ServletException, IOException{

res.setContentType(“application/pdf”);
//Create a document-object
Document document = new Document();
try{

Class.forName(“com.mysql.jdbc.Driver”);
Connection con =

DriverManager.getConnection(“jdbc:mysql://
localhost:3306/test”, “root”, “root”);

java.util.List list = new ArrayList();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery(“select *

from employee”);
while(rs.next()){

String id = rs.getString(“empId”);
String add = rs.getString(“empAdd”);
list.add(id+” “+add);

}
// Create a PDF document writer
PdfWriter.getInstance(document,

res.getOutputStream());
document.open();

// Create paragraph
Paragraph paragraph = new

Paragraph(“Data from database:”);
// Add paragraph to the document
document.add(paragraph);

com.lowagie.text.List list1=new
com.lowagie.text.List(true);

Iterator i = list.iterator();
while(i.hasNext()){

list1.add(new
ListItem((String)i.next()));

}
// Add list of data retrieved from

database to the document
document.add(list1);
document.close();

}
catch (Exception e) {

e.printStackTrace();
// Close the document
document.close();

 }

}
}

Output of the program:

2. Viewing html source of a page running
on the server:

You can view complete html code of a page
running on the server with the help of Java.
This section provides you the complete code of
the above program. This program takes a url

Tips & Tricks

64 Java Jazz Up Feb-08

starting from “http://” otherwise it sends an
error message indicating invalid url.

ViewSource.java

import java.io.*;
import java.net.*;

public class ViewSource {
 public static void main (String[] args) throws
IOException{
 System.out.print(“Enter url to view html
source code:”);
 BufferedReader br = new
BufferedReader(new
InputStreamReader(System.in));
 String url = br.readLine();
 try{
 URL u = new URL(url);
 HttpURLConnection uc =
(HttpURLConnection) u.openConnection();
 int code = uc.getResponseCode();
 String response =
uc.getResponseMessage();
 System.out.println(“HTTP/1.x “ + code +
“ “ + response);
 for(int j = 1; ; j++){
 String header = uc.getHeaderField(j);
 String key = uc.getHeaderFieldKey(j);
 if(header == null || key == null)
 break;
 System.out.println(uc.getHeaderFieldKey(j)
+ “: “ + header);
 }
 InputStream in = new
BufferedInputStream(uc.getInputStream());
 Reader r = new InputStreamReader(in);
 int c;
 while((c = r.read()) != -1){
 System.out.print((char)c);
 }
 }
 catch(MalformedURLException ex){
 System.err.println(url + “ is not a valid
URL.”);
 }
 catch(IOException ie){
 System.out.println(“Input/Output Error: “
+ ie.getMessage());
 }
 }
}

In the program, HttpURLConnection is the
abstract class of the java.net package. This class
extends the URLConnection class of the java.net
package and facilitates all same facilities of the
URLConnection class with the specific HTTP
features specially. getResponseCode() method
of the HttpURLConnection class returns an
integer value which is the code for the status
from the http response message.
getResponseMethod() method of the
HttpURLConnection class shows the message
with the http response code from the server.
getHeaderFieldKey(int j) method returns the key
for the given jth header field.

Output of the program:

C:\JavaJazzUp>java ViewSource
Enter url of local for viewing html source
code: http://localhost:8080/JJU/index
.jsp
HTTP/1.x 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=
CC15E9CA0342CB43B2E2A3352E657528;
Path=/JJU
Content-Type: text/html;charset=ISO-8859-
1
Content-Length: 205
Date: Tue, 08 Jan 2008 05:59:07 GMT
<!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”
>
<html>
<head>
 <title>Index</title>
</head>
<body>
Hello........
</body>
</html>

3. Showing digital clock in Applet

This is an example of applet showing current
time as in digital clock. This type of program is
used to display the time on browser where your
application is running.

In this example the time will be displayed in an

Tips & Tricks

 Feb-08 Java Jazz Up 65

applet in the time format like: hours: minutes:
seconds AM/PM (hh:mm:ss AM/PM). Here, the
ClockApplet class name extends from the Applet
class and implements to the Runnable interface.
start() method creates a new instance of the
Thread class and starts it. Loop in run() method
lets the applet repaint itself till the current thread
is not null and tells the thread to sleep for 1
second. repaint() method calls the applet’s
paint() method which updates the applet.

ClockApplet.java

import java.applet.*;
import java.awt.*;
import java.util.*;

public class ClockApplet extends Applet
implements Runnable{
 Thread t,t1;
 public void start(){
 t = new Thread(this);
 t.start();
 }

 public void run(){
 t1 = Thread.currentThread();
 while(t1 == t){
 repaint();
 try{
 t1.sleep(1000);
 }catch(InterruptedException e){}
 }
 }

 public void paint(Graphics g){
 Calendar cal = new GregorianCalendar();
 String hour =
String.valueOf(cal.get(Calendar.HOUR));
 String minute =
String.valueOf(cal.get(Calendar.MINUTE));
 String second =
String.valueOf(cal.get(Calendar.SECOND));

int int_am_pm = cal.get(Calendar.AM_PM);
String str_am_pm = “AM”;
if(int_am_pm==1)

str_am_pm = “PM”;

Font f = new Font(“SansSerif”, Font.BOLD,
50);

g.setFont(f);

 g.drawString(hour + “:” + minute + “:” +
second + “ “ + str_am_pm, 50, 50);
 }
}

Output of the program:

4. Get Column Names From ResultSet in
MySQL

In JDBC, ResultSet is used to retrieve column
values using either the index number or the
name of the column. ResultSet is generated by
executing a statement that queries the
database. If we want to find out name, type,
properties of the columns retrieved through
ResultSet object then ResultSetMetaData
object is used which is returned by the
getMetaData() of ResultSet. In the example
below, ResultSet contains values of all the
columns of the “employee” table of “test”
database. The following code fragment creates
the ResultSet object rs, creates the
ResultSetMetaData object rsmd, and uses rsmd
to find out number of columns rs has, types of
columns and lengths of columns, table name of
the column. List of tables in test database used
in the example has been given below:

Tables in test database in MySQL:

employee table:

empId empAdd
emp1 Delhi
emp2 Noida

Tips & Tricks

66 Java Jazz Up Feb-08

workexp table:

empId technologyyears
emp1 Java 4
emp1 php 2

The program, given below, uses jdbc code to
store the data and metadata for the columns
of the tables in “ResultSet” and
“ResultSetMetaData” objects.

GetMetadata.java

import java.sql.*;

public class GetMetadata {
public static void main(String[] args) throws

Exception {
Class.forName(“com.mysql.jdbc.Driver”);
Connection con =

DriverManager.getConnection(“jdbc:mysql://
localhost:3306/test”, “root”, “root”);

Statement st = con.createStatement();
ResultSet rs = st.executeQuery(“select

employee.empId, workexp.technology from
employee, workexp where employee.empId =
workexp.empId”);

getColumnNames(rs);
rs.close();
st.close();
con.close();

}

public static void
getColumnNames(ResultSet rs) throws
SQLException {

if (rs == null) {
 return;
}
ResultSetMetaData rsmd =

rs.getMetaData();
// Get the number of coulumns
int numberOfColumns =

rsmd.getColumnCount();

for (int i = 1; i < numberOfColumns + 1;
i++) {

 System.out.println();
// get the column name at ith index

 System.out.println(“Column Name
:”+rsmd.getColumnName(i));

 // get the Data Type of the column
 System.out.println(“Data Type

:”+rsmd.getColumnTypeName(i));
 // get the Length of the column
 System.out.println(“Length

:”+rsmd.getColumnDisplaySize(i));
 // Get the table name of the column
 System.out.println(“Table Name

:”+rsmd.getTableName(i));
}

 }

}

Output of the program:

C:\JavaJazzUp>java GetMetadata

Column Name :empId

Data Type :VARCHAR
Length :6
Table Name :employee

Column Name :technology
Data Type :VARCHAR
Length :20
Table Name :workexp

C:\JavaJazzUp>

5. Copy data from Excel to the MySQL

You may want to copy data in excel sheet to
the table of MySQL database. This JDBC
program can help you to understand how it
can be done in java. ExcelToMySQL. Before
running this program you have to make dsn.
Open the odbc data source administrator
console, create new data source, select
microsoft excel driver, give data source name
(dsn) and select excel sheet name. In this
example, the dsn name is “myexcel”. Two
connections have been created, one for excel
and the other for MySQL. Three queries are
fired, first one to get the data from excel sheet,
the next to create the table of your choice, if
doesn’t exist, with all the columns and name
as in excel sheet and the last one to insert the
data to the specified table.

Tips & Tricks

 Feb-08 Java Jazz Up 67

The data in the excel sheet can be seen below:

This is the program below, which will copy the
above data to the MySQL.

ExcelToMySQL.java

import java.sql.*;
import java.util.*;
import java.io.*;

public class ExcelToMySQL {
public static void main(String args[]) throws

IOException{
System.out.println(“Enter table name:”);
BufferedReader bf = new

BufferedReader(new
InputStreamReader(System.in));

String tableName = bf.readLine();

Connection con_excel = null, con_mysql =
null;

Statement stmt_excel = null, stmt_mysql
= null;

ResultSet rs_excel = null;
List columnNameList = null;
try {

con_excel =
getConnection(“sun.jdbc.odbc.JdbcOdbcDriver”,
“jdbc:odbc:myexcel”, “”, “”);

stmt_excel =
con_excel.createStatement();

String query_excel = “select * from
[Sheet1$]”;

rs_excel =
stmt_excel.executeQuery(query_excel);

columnNameList =
getColumnNameList(rs_excel);

con_mysql =
getConnection(“com.mysql.jdbc.Driver”,
“jdbc:mysql://localhost:3306/test”, “root”,
“root”);

stmt_mysql =
con_mysql.createStatement();

String query_mysql =
getQueryStringToCreateTable(tableName,
columnNameList);

stmt_mysql.executeUpdate(query_mysql);
PreparedStatement p_stmt_mysql =

con_mysql.prepareStatement
(getQueryStringToInsertValues(tableName,
columnNameList));

insertValuesAndExecuteQuery
(rs_excel,columnNameList,p_stmt_mysql);

}
catch (Exception e) {

System.err.println(e.getMessage());
}
finally {

try {
rs_excel.close();
stmt_excel.close();
stmt_mysql.close();
con_excel.close();
con_mysql.close();

}
catch (SQLException e) {

e.printStackTrace();
}

}
}
public static Connection

getConnection(String driver, String url, String
username, String password) throws
Exception {

Class.forName(driver);
return DriverManager.getConnection(url,

username, password);
}
public static List

getColumnNameList(ResultSet rs) throws
SQLException{

List list = new ArrayList();
ResultSetMetaData rsmd =

rs.getMetaData();
int numberOfColumns =

rsmd.getColumnCount();
for (int i = 1; i < numberOfColumns + 1;

i++) {

Tips & Tricks

68 Java Jazz Up Feb-08

list.add(rsmd.getColumnName(i));
}
return list;

}

public static String
getQueryStringToCreateTable(String
tableName, List columnNameList){

Iterator it = columnNameList.iterator();
String st = “create table “+ tableName+”(“;
for(int i=0; i<columnNameList.size();i++){

if(i!=0){
st = st+”,”;

}
st= st+(String)columnNameList.get(i);
st = st+” varchar(10;

}
st = st+”)”;
return st;

}
public static String

getQueryStringToInsertValues(String
tableName, List columnNameList){

Iterator it = columnNameList.iterator();
String st = “insert into “+ tableName+”(“;
String values = “values(“;
for(int i=0; i<columnNameList.size();i++){

if(i!=0){
st = st+”,”;
values = values+”,”;

}
st= st+(String)columnNameList.get(i);
values = values +”?”;

}
st = st+”)”+ values+”)”;
return st;

}
public static void

insertValuesAndExecuteQuery(ResultSet rs,
List columnNameList, PreparedStatement
p_stmt_mysql) throws SQLException{

while (rs.next()) {
for(int i=0;

i<columnNameList.size();i++){
p_stmt_mysql.setString(i+1,

rs.getString((String)columnNameList.get(i)));
}
int n = p_stmt_mysql.executeUpdate();

}
}

}

Tips & Tricks

The data in MySQL can be seen below:

 Feb-08 Java Jazz Up 69

Advertise with JavaJazzUp
We are the top most providers of technology
stuffs to the java community. Our technology
portal network is providing standard tutorials,
articles, news and reviews on the Java
technologies to the industrial technocrats. Our
network is getting around 3 million hits per
month and its increasing with a great pace.

For a long time we have endeavored to provide
quality information to our readers. Furthermore,
we have succeeded in the dissemination of the
information on technical and scientific facets of
IT community providing an added value and
returns to the readers.
We have serious folks that depend on our site
for real solutions to development problems.

JavaJazzUp Network comprises of :

http://www.roseindia.net
http://www.newstrackindia.com
http://www.javajazzup.com
http://www.allcooljobs.com

Advertisement Options:

Banner Size Page Views Monthly
Top Banner 470*80 5,00,000 USD 2,000
Box Banner 125 * 125 5,00,000 USD 800
Banner 460x60 5,00,000 USD 1,200
Pay Links Un Limited USD 1,000
Pop Up Banners Un Limited USD 4,000

The http://www.roseindia.net network is the
“real deal” for technical Java professionals.
Contact me today to discuss your
customized sponsorship program. You may
also ask about advertising on other
Technology Network.

Deepak Kumar
deepak@roseindia.net

70 Java Jazz Up Feb-08

Valued JavaJazzup Readers Community

We invite you to post Java-technology
oriented stuff. It would be our pleasure
to give space to your posts in
JavaJazzup.

Contribute to Readers Forum

If theres something youre curious about, were
confident that your curiosity, combined with the
knowledge of other participants, will be enough
to generate a useful and exciting Readers
Forum. If theres a topic you feel needs to be
discussed at JavaJazzup, its up to you to get it
discussed.

Convene a discussion on a specific subject

If you have a topic youd like to talk about .
Whether its something you think lots of people
will be interested in, or a narrow topic only a
few people may care about, your article will
attract people interested in talking about it at
the Readers Forum. If you like, you can prepare
a really a good article to explain what youre
interested to tell java technocrates about.

Sharing Expertise on Java Technologies

If youre a great expert on a subject in java,
the years you spent developing that expertise
and want to share it with others. If theres
something youre an expert on that you think
other technocrates might like to know about,
wed love to set you up in the Readers Forum
and let people ask you questions.

Show your innovation

We invite people to demonstrate innovative
ideas and projects. These can be online or
technology-related innovations that would bring
you a great appreciations and recognition
among the java technocrates around the globe.

Hands-on technology demonstrations

Some people are Internet experts. Some are
barely familiar with the web. If you’d like to show
others aroud some familiar sites and tools, that
would be great. It would be our pleasure to
give you a chance to provide your
demonstrations on such issues : How to set

up a blog, how to get your images onto Flickr,
How to get your videos onto YouTube,
demonstrations of P2P software, a tour of
MySpace, a tour of Second Life (or let us know
if there are other tools or technologies you
think people should know about...).

Present a question, problem, or puzzle

Were inviting people from lots of different
worlds. We do not expect everybody at Readers
Forum to be an expert in some areas. Your
expertise is a real resource you may contribute
to the Java Jazzup. We want your curiosity to
be a resource, too. You can also present a
question, problem, or puzzle that revolves
around java technologies along with their
solution that you think would get really
appreciated by the java readers around the
globe.

Post resourceful URLs

If you think you know such URL links which
can really help the readers to explore their java
skills. Even you can post general URLs that
you think would be really appreciated by the
readers community.

Anything else

If you have another idea for something youd
like to do, talk to us. If you want to do
something that we havent thought of, have a
crazy idea, wed really love to hear about it.
Were open to all sorts of suggestions, especially
if they promote readers participation.

 Feb-08 Java Jazz Up 71

72 Java Jazz Up Feb-08

